A Bulk-Flow Analysis of Static and Dynamic Characteristics of Eccentric Circumferentially-Grooved Liquid Annular Seals

[+] Author and Article Information
Mihai Arghir, Jean Frene

LMS, Université de Poitiers, UFR Sciences, SP2MI, Téléport 2, Blvd. Pierre et Marie Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

J. Tribol 126(2), 316-325 (Apr 19, 2004) (10 pages) doi:10.1115/1.1611499 History: Received February 24, 2003; Revised July 10, 2003; Online April 19, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Childs, D. W., 1984, “Finite-Length Solutions for Rotordynamic Coefficients of Constant-Clearance and Convergent-Tapered Annular Seals,” in Vibrations in Rotating Machinery, Proceedings, ImechE, Third International Conference on Vibrations in Rotating Machinery, York, England, pp. 223–231.
Nordmann, R., Dietzen, F. J., Janson, W., Frei, A., and Florjancic, S., 1986, “Rotordynamic Coefficients and Leakage Flow of Parallel Grooved Seals and Smooth Seals,” Rotordynamic Instability Problems in High-Performance Turbomachinery, Proceedings of a Workshop, NASA CP No. 2338, pp. 129–153.
Kim,  C.-H., and Childs,  D. W., 1987, “Analysis for Rotordynamic Coefficients of Helically-Grooved Turbulent Annular Seals,” ASME J. Tribol., 109(1), pp. 136–143.
Iwatsubo, T., and Sheng, B., 1990, “Evaluation of Dynamic Characteristics of Parallel Grooved Seals by Theory and Experiment,” Proceedings of the Third IFToMM International Conference on Rotordynamics, Lyon, France, pp. 313–318.
Florjancic, S., 1990, “Annular Seals of High Energy Centrifugal Pumps: A New Theory and Full Scale Measurement of Rotordynamic Coefficients and Hydraulic Friction Factors,” Dissertation, ETH Zürich Nr. 9087.
Marquette,  O. R., and Childs,  D. W., 1996, “An Extended Three-Control-Volume Theory for Circumferentially-Grooved Liquid Seals,” ASME J. Tribol., 118(1), pp. 276–285.
Dietzen, F. J., 1988, “Bestimmung der Dynamischen Koeffizienten von Dichtspalten mit Finite-Differenz-Verfahren,” VDI Fortschrift-Berichte, Reihe 11, Nr. 103, Düsseldorf.
Rhode,  D. L., Hensel,  S. J., and Guidry,  M. J., 1992, “Three-Dimensional Computations of Rotordynamic Force Distribution in a Labyrinth Seal,” STLE Tribol. Trans., 36(3), pp. 461–469.
Athavale, M. M., Przekwas, A. J., Hendricks, R. C., and Liang, A., 1994, “SCISEAL: A 3D CFD Code for Accurate Analysis of Fluid Flow and Forces in Seals,” Advanced ETO Propulsion Conference, May.
Arghir, M., 1996, “Modélisation du Comportement Dynamique des Joints Annulaires à Fluide Incompressible,” Thèse de Docteur de l’Université de Poitiers.
Marquette, O. R., and Childs, D. W., 1997, “Theory Versus Experiment for Leakage and Rotordynamic Coefficients of Circumferentially-Grooved Liquid Annular Seals With L/D of 0.45,” FEDSM97-3333.
Childs, D. W., 1993, Turbomachinery Rotordynamics. Phenomena, Modeling and Analysis, Wiley Interscience, New York.
Hirs,  G. G., 1973, “A Bulk-Flow Theory for Turbulence in Lubricant Films,” J. Lubr. Technol., April, pp. 137–146.
Abramovich, G. N., 1963, The Theory of Turbulent Jets, MIT Press, Cambridge, Mass.
Weiser, H.-P., 1989, “Ein Beitrag zur Berechnung der Dynamischen Koeffizienten von Labyrinthdichtungsystemen bei Turbulenter Durchströmung mit Kompressiblen Medien,” Dissertation der Universität Kaiserslautern, D 386.
Launder,  B. E., and Leschziner,  M., 1978, “Flow in Finite-Width, Thrust Bearings Including Inertial Effects,” ASME J. Lubr. Technol., 100, pp. 330–338.
San Andrés,  L., 1991, “Analysis of Variable Fluid Properties, Turbulent Annular Seals,” ASME J. Tribol., 113(4), pp. 694–702.
Arghir,  M., and Fre⁁ne,  J., 2001, “A Triangle Based Finite Volume Method for the Integration of Lubrication’s Incompressible Bulk Flow Equations,” ASME J. Tribol., 123(1), pp. 118–124.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation & McGraw Hill B. C..
Arghir,  M., Alsayed,  A., and Nicolas,  D., 2002, “The Finite Volume Solution of the Reynolds Equation of Lubrication With Film Discontinuities,” Int. J. Mech. Sci., 44(10), pp. 2119–2132.
Scharrer, J. K., 1987, “A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals,” TRC-SEAL-3-87, Texas A&M University, College Station, TX.


Grahic Jump Location
Three-control-volume model of the groove flow and the corresponding pressure variation
Grahic Jump Location
Finite volume discretization
Grahic Jump Location
Leakage flow rate (solid line is the present analysis, dashed line are experimental data from 11)
Grahic Jump Location
Pressure distributions along a ten-grooves annular seal for centered working conditions (ΔP=64.5 bar, Ω=24,600 rpm)
Grahic Jump Location
Example of the first order pressure variation for an eccentric ten-grooves annular seal (ΔP=64.5 bar, Ω=24,600 rpm)
Grahic Jump Location
Stiffness coefficients [MN/m] versus relative eccentricity (1=KXX,2=KYY,3=KXY,4=KYX, solid line is the present analysis, dashed lines are experimental data from 11)
Grahic Jump Location
Damping coefficients [kNs/m] versus relative eccentricity (1=CXX,2=CYY,3=CXY,4=−CYX, solid line is the present analysis, dashed lines are experimental data from 11)
Grahic Jump Location
Added-mass coefficients [kg] versus relative eccentricity (1=MXX,2=MYY, solid line is the present analysis, dashed lines are experimental data from 11)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In