Polonsky,
I. A., and Keer,
L. M., 2000, “Fast Methods for Solving Rough Contact Problems: A Comparative Study,” ASME J. Tribol., 122, pp. 36–41.

Love,
A. E. H., 1929, “The Stress Produced in a Semi-infinite Solid by Pressure on Part of the Boundary,” Philos. Trans. R. Soc. London, Ser. A, 228, pp. 377–420.

Ferris,
M. C., and Pang,
J. S., 1997, “Engineering and Economic Applications of Complementarity Problems,” SIAM Rev., 39, pp. 669–713.

Greenwood,
J. A., and Williamson,
J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, Ser. A, 295, pp. 300–319.

Conry,
T. F., and Seireg,
A., 1971, “A Mathematical Programming Method for Design of Elastic Bodies in Contact,” J. Appl. Mech., 38, pp. 387–392.

Kalker,
J. J., and van Randen,
Y., 1972, “A Minimum Principle for Frictionless Elastic Contact with Application to Non-Hertzian Half-space Contact Problems,” J. Eng. Math., 6(2), pp. 193–206.

Kalker,
J. J., Dekking,
F. M., and Vollebregt,
E. A. H., 1997, “Simulation of Rough, Elastic Contacts,” J. Appl. Mech., 64, pp. 361–368.

Ahmadi,
N., Keer,
L. M., and Mura,
T., 1983, “Non-Hertzian Contact Stress Analysis for an Elastic Half Space-normal and Sliding Contact,” Int. J. Solids Struct., 19(4), pp. 357–373.

Liu,
Z., Neville,
A., and Reuben,
R. L., 2001, “A Numerical Calculation of the Contact Area and Pressure of Real Surfaces in Sliding Wear,” ASME J. Tribol., 123, pp. 27–35.

Webster,
M. N., and Sayles,
R. S., 1986, “A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces,” ASME J. Tribol., 108, pp. 314–320.

Björklund,
S., and Andersson,
S., 1994, “A Numerical Model for Real Elastic Contacts Subjected to Normal and Tangential Loading,” Wear, 179, pp. 117–122.

Allwood,
J. M., Bryant,
G. F., and Stubbs,
R. E., 1997, “An Efficient Treatment of Binary Nonlinearities Applied to Elastic Contact Problems Without Friction,” J. Eng. Math., 31, pp. 81–98.

Francis,
H. A., 1982, “A Finite Surface Element Model for Plane-strain Elastic Contact,” Wear, 76, pp. 221–245.

Chiu,
Y. P., and Hartnett,
M. J., 1983, “A Numerical Solution for Layered Solid Contact Problems with Applications to Bearings,” J. Lubr. Technol., 105, pp. 585–590.

Vollebregt,
E. A. H., 1995, “A Gauss-Seidel Type Solver for Special Convex Programs, with Applications to Frictional Contact Mechanics,” J. Optim. Theory Appl., 87(1), pp. 47–67.

Ren,
N., and Lee,
S. C., 1993, “Contact Simulation of Three-dimensional Rough Surfaces using Moving Grid Method,” ASME J. Tribol., 115, pp. 597.

Sui,
P. C., 1997, “An Efficient Computation Model for Calculating Surface Contact Pressures Using Measured Surface Roughness,” Tribol. Trans., 40, pp. 243–250.

Newland, D. E., 1993, *An Introduction to Random Vibrations, Spectral and Wavelet Analysis*, Longman Scientific and Technical.

Ju,
Y., and Farris,
T. N., 1996, “Spectral Analysis of Two-dimensional Contact problems,” ASME J. Tribol., 118, pp. 320–328.

Johnson, K. L., 1985, *Contact Mechanics*, Cambridge University Press, Cambridge.

Ai,
X., and Sawamiphakdi,
K., 1999, “Solving Elastic Contact Between Rough Surfaces as an Unconstrained Strain Energy Minimization by Using CGM and FFT Techniques,” ASME J. Tribol., 121, pp. 639–647.

Hu,
Y-Z., Barber,
G. C., and Zhu,
D., 1999, “Numerical Analysis for the Elastic Contact of Real Rough Surfaces,” Tribol. Trans., 42(3), pp. 443–452.

Stanley,
H. M., and Kato,
T., 1997, “An FFT-based Method for Rough Surface Contact,” ASME J. Tribol., 119, pp. 481–485.

Brandt,
A., and Lubrecht,
A. A., 1990, “Multilevel Matrix Multiplication and Fast Solution of Integral Equations,” J. Comput. Phys., 90, pp. 348–370.

Lubrecht,
A. A., and Ioannides,
E., 1991, “A Fast Solution of the Dry Contact Problem and the Associated Sub-surface Stress Field, Using Multilevel Techniques,” ASME J. Tribol., 113, pp. 128–133.

Venner, C. H., and Lubrecht, A. A., 1994, “Multilevel Solution of Integral and Integro-differential Equations in Contact Mechanics and Lubrication,” Proc. EMG 93, UK, pp. 111–127.

Polonsky,
I. A., and Keer,
L. M., 1999, “A Numerical Method for Solving Rough Contact Problems Based on the Multilevel Multisummation and Conjugate Gradient Techniques,” Wear, 231, pp. 206–219.

Yongqing,
J., and Linqing,
Z., 1992, “A Full Numerical Solution for the Elastic Contact of Three-dimensional Real Rough Surfaces,” Wear, 157, pp. 151–161.

Snidle,
R. W., and Evans,
H. P., 1994, “A Simple Method of Elastic Contact Simulation,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 208, pp. 291–293.

Chang,
L., and Gao,
Y., 1999, “A Simple Numerical Method for Contact Analysis of Rough Surfaces,” ASME J. Tribol., 121, pp. 425–432.

Golub, G. H., and van Loan, C. F., 1989, *Matrix Computations*, 2nd ed., John Hopkins University Press, Baltimore and London.

Duncan,
W. J., 1944, “Some Devices for the Solution of Large Sets of Simultaneous Linear Equations,” London, Edinburgh Dublin Philos. Mag. J. Sci., 35, pp. 660–670.

Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., 1979, *Linpack: User’s Guide*, Society for Industrial and Applied Mathematics, Philadelphia, PA.

Shewchuk, J. R., 1994, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,” http://www.cs.cmu.edu/∼quake-papers/painless-conjugate-gradient.ps

Bakolas,
V., 2003, “Numerical Generation of Arbitrarily Oriented Non-Gaussian Three Dimensional Rough Surfaces,” Wear, 254, pp. 546–554.