Determination of the Discharge Coefficient of a Thin-Walled Orifice Used in Hydrostatic Bearings

[+] Author and Article Information
S. Charles, O. Bonneau, J. Fre⁁ne

Université de Poitiers, Laboratoire de Mécanique des Solides, UMR CNRS 6610, SP2MI-Boulevard Marie et Pierre Curie-Téléport2-BP179 86962 FUTUROSCOPE CHASSENEUIL, Cedex, France

J. Tribol 127(3), 679-684 (Jun 13, 2005) (6 pages) doi:10.1115/1.1843158 History: Received August 20, 2003; Revised March 16, 2004; Online June 13, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Idel’cik, I. E., 1986, “Mémento Des Pertes De Charges,” Edition Eyrolles, collection direction études et recherche d’EDF, Paris.
Schenck, H., 1979, Theory of Engineering Experimentation, 3rd ed., McGraw–Hill, New York.
Rowe, W. B., 1983, Hydrostatic and Hybrid Bearing Design, Butterworths, London.
Scharrer,  J., and Hibbs,  R., 1990, “Flow Coefficients for the Orifice of a Hydrostatic Bearing,” Tribol. Trans., 33, pp. 543–550.
San Andrés,  L., 1990, “Turbulent Hybrid Bearings With Fluid Inertia Effects,” ASME J. Tribol., 112(4), pp. 699–707.
San Andrés,  L., and Childs,  D., 1997, “Angled Injection-Hydrostatic Bearings Analysis and Comparison to Test Results,” ASME J. Tribol., 119, pp. 179–187.
Franchek,  N., and Childs,  D., 1994, “Experimental Test Results for Four High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearings,” ASME J. Tribol., 116, pp. 147–153.
Childs,  D., and San Andrés,  L., 1995, “Theorical and Experimental Comparisons for Rotordynamic Coefficients of a High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearing,” ASME J. Tribol., 117, pp. 285–290.
Kurtin, J. R., 1991, “Experimental vs. Theoretical Characteristics of a High Speed Hybrid Bearing,” ASME Tribology Conference, paper No. 91-Trib 35.
Fre⁁ne, J., and Nicolas, D., 1990, Lubrification Hydrodynamique, Paliers et Butées, Edition Eyrolles, collection direction études et recherche EDF, Paris.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C.
Ferziger, J. L., and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer, Heidelberg.
Launder,  B. E., and Spalding,  B. B., 1974, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3, pp. 269–289.
Roache,  P. J., 1994, “Perspective: A Method for Uniform Reporting of Grid Refinement Studies,” J. Fluids Eng., 116, pp. 699–707.
Helene,  M., Arghir,  M., and Frene,  J., 2001, “Numerical Study of Pressure Pattern in a Two-Dimensional Hybrid Journal Bearing Recess. Laminar and Turbulent Flow Results,” ASME J. Tribol., 125, pp. 301–308.


Grahic Jump Location
Clearance and stiffness versus Cd
Grahic Jump Location
Geometric model used for computation
Grahic Jump Location
Refining of the grid close to the orifice
Grahic Jump Location
Pressure field distribution close to the orifice
Grahic Jump Location
Streamline close to the orifice
Grahic Jump Location
Flow/pressure of a diaphragm (diameter 1.5 mm)
Grahic Jump Location
Lower plate cross section (1:3)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In