Current industrial applications require a consideration of two-dimensional surface roughness effects in design and optimization of fluid bearings. Although the influence of striated surface roughness on fluid lubrication is now at a fairly mature level of understanding, the knowledge and understanding of two-dimensional roughness effects is not nearly at the same level as that achieved over the past several decades for one-dimensional striations. The subject of this paper includes the formulation of a practical “roughness averaged” lubrication equation that is appropriate for two-dimensional surface roughness and applicable over a wide range of Knudsen numbers. After derivation by multiple-scale analysis, the resulting lubrication equation is specialized to treat the patterned data islands located on a storage medium as a two-dimensional roughness pattern, and then used to determine the effect of this roughness on the air-bearing interface between recording head slider and disk. The roughness averaged lubrication equation is solved numerically by a variable-grid finite-difference algorithm, and computed results are included for several bearing geometries.