Research Papers: Contact Mechanics

Prediction of Tribological Limits in Sliding Contacts: Flash Temperature Calculations in Sliding Contacts and Material Behavior

[+] Author and Article Information
Heinz Kloß

Bundesanstalt für Materialforschung
und-prüfung (BAM),
Unter den Eichen 44–46,
Berlin 12203, Germany
e-mail: heinz.kloss@bam.de

Mathias Woydt

Bundesanstalt für Materialforschung
und-prüfung (BAM),
Unter den Eichen 44–46,
Berlin 12203, Germany
e-mail: mathias.woydt@bam.de

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received May 7, 2015; final manuscript received February 11, 2016; published online May 17, 2016. Assoc. Editor: James R. Barber.

J. Tribol 138(3), 031403 (May 17, 2016) (11 pages) Paper No: TRIB-15-1147; doi: 10.1115/1.4033132 History: Received May 07, 2015; Revised February 11, 2016

In order to achieve greater efficiency or to meet light weight requirements, components are downsized. This, however, increases the load, e.g., Hertzian or nominal contact pressures and stresses of tribosystems. This load is expressed as pa·v-value, the product of nominal contact pressure and sliding velocity. pa·v-values are an effective tool for design engineers for predicting low wear/high wear transitions. Therefore, in the present work, topographical analysis has been combined with the plasticity of micro-asperities and the flash temperatures to estimate the limits of pa·v diagrams. The central piece of this set of models presented here is the calculations for flash temperatures and contact mechanics of micro-asperities. This central piece is used to predict the performance of materials in high velocity (turbines, machinery) and low velocity (human joint) applications. It is shown that the model combination suggested here is a useful tool for screening and preselecting a candidate and new materials with respect to tribological requirements before engaging in expensive testing.

Copyright © 2016 by ASME
Topics: Wear , Temperature
Your Session has timed out. Please sign back in to continue.


Ashby, M. F. , Abulawi, J. , and Kong, H. S. , 1991, “ Temperature Maps for Frictional Heating in Dry Sliding,” Tribol. Trans., 34(4), pp. 577–587. [CrossRef]
Tian, X. , and Kennedy, F. E. , 1993, “ Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding,” ASME J. Tribol., 115(3), pp. 411–418. [CrossRef]
Kennedy, F. E. , 2001, “ Frictional Heating and Contact Temperatures,” Modern Tribology Handbook, Vol. 1, B. Bhushan , ed., CRC Press, Boca Raton, pp. 235–272.
Griffioen, J. A. , Bair, S. , and Winer, W. O. , 1986, Infrared Surface Temperature Measurements in a Sliding Ceramic-Ceramic Contact, Mechanisms and Surface Distress, D. Dowson , C. M. Taylor , M. Godet , and D. Berthe , eds., Butterworths, London, pp. 238–245.
Blok, H. , 1937, “ Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oilliness Lubricating Conditions,” General Discussion on Lubrication and Lubricants, Institution of Mechanical Engineers, London, pp. 222–235.
Jaeger, J. C. , 1942, “ Moving Sources of Heat and the Temperature at Sliding Contacts,” Proc. R. Soc. N.S.W., 76, pp. 203–224.
Holm, R. , 1948, “ Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature Rise in a Sliding Contact,” J. Appl. Phys., 19(4), pp. 361–366. [CrossRef]
Archard, J. F. , 1959, “ The Temperature of Rubbing Surfaces,” Wear, 2(6), pp. 438–455. [CrossRef]
Kuhlmann-Wilsdorf, D. , 1986, “ Sample Calculation of Flash Temperatures in Silver-Graphite Electric Contact Sliding on Copper,” Wear, 107(1), pp. 71–90. [CrossRef]
Tian, X. , and Kennedy, F. E. , 1994, “ Maximum and Average Flash Temperatures in Sliding Contacts,” ASME J. Tribol., 116(1), pp. 167–174. [CrossRef]
Greenwood, J. A. , and Williamson, J. B. P. , 1966, “ Contact of Nominally Flat Surfaces,” Proc. R. Soc. London, A, 295(1442), pp. 300–319. [CrossRef]
Greenwood, J. A. , and Tripp, J. H. , 1970/1971, “ The Contact of Nominal Flat Rough Surfaces,” Proc. Inst. Mech. Eng., 185(1970), pp. 625–633. [CrossRef]
Nayak, P. R. , 1971, “ Random Process Model of Rough Surfaces,” J. Lubr. Technol., 93(3), pp. 398–407. [CrossRef]
McCool, J. I. , 1986, “ Comparison of Models for the Contact of Rough Surfaces,” Wear, 107(1), pp. 37–60. [CrossRef]
Wuttke, W. , 1986, Tribophysik (Tribophysics), VEB Fachbuchverlag, Leipzig, Germany, p. 29.
Smith, E. H. , and Arnell, R. D. , 2013, “ A New Approach to the Calculation of Flash Temperatures in Dry, Sliding Contacts,” Tribol. Lett., 52(3), pp. 407–414. [CrossRef]
Dinc, O. S. , Ettles, C. M. , Calabrese, S. J. , and Scarton, H. A. , 1993, “ The Measurement of Surface Temperature in Dry or Lubricated Sliding,” ASME J. Tribol., 115(1), pp. 78–82. [CrossRef]
Rowe, K. G. , Bennet, A. I. , Krick, B. A. , and Sawyer, W. G. , 2013, “ In Situ Thermal Measurements of Sliding Contacts,” Tribol. Int., 62(6), pp. 208–214. [CrossRef]
Beckmann, G. , and Kleis, I. , 1983, Abtragverschleiß von Metallen (Dry Wear of Metals), VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Germany, p. 38.
Bhushan, B. , 1998, “ Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact,” Tribol. Lett., 4(1), pp. 1–35. [CrossRef]
Rabinowicz, E. , 1977, “ Abrasive Wear Resistance as a Material Test,” Lubr. Eng., 33(7), pp. 378–381.
Bill, R. C. , and Ludwig, L. P. , 1980, “ Wear of Seal Materials Used in Aircraft Propulsion Systems,” Wear, 59(1), pp. 165–189. [CrossRef]
Marscher, W. D. , 1980, “ A Phenomenological Model for Abradable Wear in High Performance Turbomachinery,” Wear, 59(1), pp. 191–211. [CrossRef]
Schmid, R. K. , 1997, “ New High Temperature Abradables for Gas Turbines,” Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland.
Crabos, F. , 1996, “ Caractérisation, Evaluation et Optimization de Systems Barrier thermique industriels—Application aux turbines a gaz,” Ph.D. thesis, École Nationale Supérieur de Chimie de Toulouse, Toulouse, France.
Kuhlmann-Wilsdorf, D. , 1985, “ Flash Temperatures Due to Friction and Joule Heat at Asperity Contacts,” Wear, 105(3), pp. 187–198. [CrossRef]
Alaya, M. , Oberacker, R. , Hoffmann, M. J. , Krebs, W. , Koch, R. , and Wittig, S. , 1997, “ Thermophysikalische Eigenschaften von CeO2- und Y2O3 stabilisierten ZrO2-Wärmedemmschichtsystemen und ihre Auswirkung auf das thermozyklische Verhalten und den Strahlungswärmeübergang,” Werkstoffe für die Energietechnik, Vol. 3, H. W. Günnling , ed., DGM Verlag, Hamburg, Germany, pp. 243–248.
Kurlov, A. S. , and Gusev, A. I. , 2011, “ Effect of Particle Size on the Oxidation of WC Powders During Heating,” Inorg. Mater., 47(2), pp. 133–138. [CrossRef]
McCouley, R. A. , 2013, Corrosion of Ceramic Materials, CRC Press/Taylor & Francis Group, Boca Raton, FL, p. 261.
Yao, X. , 2014, “ High-Pressure, High-Temperature Sintering of Polycrystalline Boron Nitride With Improved Thermostability and Mechanical Properties for High Temperature Applications,” Ph.D. thesis, University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT.
“ Melting Point of B2O3,” www.webelements.com
Clarke, I. , and Willmann, G. , 1994, “ Structural Ceramics in Orthopedics,” Bone Implant Interface, H. U. Cameron , ed., Mosby, St. Louis, MO, pp. 203–253.
Sauer, W. I. , and Anthony, M. E. , 1998, “ Predicting the Clinical Wear Performance of Orthopedic Bearing Surfaces,” Alternative Bearing Surfaces in Total Joint Replacement, J. J. Jacobs , and Th. L. Craig , eds., ASTM, West Conshohocken, PA, pp. 1–29.
Insley, G. M. , Turner, I. , Fisher, J. , and Streicher, R. M. , 2002, “ In-Vitro Testing and Validation of Zirconia Toughened Alumina (ZTA),” 7th International BIOLOX ® Symposium, Mar. 15–16, Georg Thieme, Stuttgart, New York, pp. 26–31.
Bergmann, G. , Graichen, F. , Rohlmann, N. , Verdonschot, N. , and van Lenthe, G. H. , 2001, “ Frictional Heating of Total Hip Implants, Part 2: Finite Element Study,” J. Biomech., 34(4), pp. 429–435. [CrossRef] [PubMed]
Mattei, L. , Di Puccio, F. , Piccigallo, B. , and Ciulli, E. , 2011, “ Lubrication and Wear Modeling of Artificial Hip Joints: A Review,” Tribol. Int., 44(5), pp. 532–549. [CrossRef]
Grabiner, M. D. , Koh, T. J. , Lundin , Th. M. , and Jahnigen, D. W. , 1993, “ Kinematics of Recovery From a Stumble,” J. Gerontol., 48(3), pp. M97–M102. [CrossRef] [PubMed]
Bergmann, G. , Deuretzbacher, G. , Heller, M. , Graichen, F. , Rohlmann, A. , Strauss, J. , and Duda, G. N. , 2001, “ Hip Contact Forces and Gait Patterns From Routine Activities,” J. Biomech., 34(7), pp. 859–871. [CrossRef] [PubMed]
Scholes, S. C. , Unsworth, A. , and Goldsmith, A. A. J. , 2000, “ A Frictional Study of Total Hip Joint Replacements,” Phys. Med. Biol., 45(12), pp. 3721–3735. [CrossRef] [PubMed]
Grove, T. H. , and Budinski, K. G. , 1981, “ Predicting Polymer Serviceability for Wear Applications,” Wear Test of Plastics: Selection and Use, ASTM, West Conshohocken, PA, pp. 59–74.
Woydt, M. , 2012, Application des données tribologiques des matériaux, Encyclopédie Techniques de l′Ingénieur, Paris.
Lancaster, J. K. , 1973, “ Dry Bearings: A Survey of Materials and Factors Affecting Their Performance,” Tribology, 6(6), pp. 219–251. [CrossRef]
Begelinger, A. , and de Gee, A. W. J. , 1974, “ Thin Film Lubrication of Sliding Point Contacts of AISI 52100 Steel,” Wear, 28(1), pp. 103–114. [CrossRef]
Hornbogen, E. , and Friedrich, K. , 1986, “ Polymerwerkstoffe und deren Verbunde (Polymers and Their Compounds),” Reibung und Verschleiß bei metallischen und nichtmetallischen Werkstoffen, K. H. Z. Gahr , ed., DGM Verlag, Oberursel, Germany, pp. 65–86.
Khonsari, M. M. , and Booser, E. R. , 2004, “ An Engineering Guide for Bearing Selection,” TLT, 60(2), pp. 26–32.
Lim, S. C. , and Ashby, M. F. , 1987, “ Wear-Mechanism Maps,” Acta Metall., 35(1), pp. 1–24. [CrossRef]
Beckmann, G. , 1980, “ A Theory of Abrasive Wear Based on Shear Effects in Metal Surfaces,” Wear, 59(2), pp. 421–423. [CrossRef]
Chang, W. R. , Etsion, I. , and Bogy, D. B. , 1988, “ Static Friction Coefficient Model for Metallic Rough Surfaces,” ASME J. Tribol., 110(1), pp. 57–63. [CrossRef]
Kloss, H. , and Wäsche, R. , 2009, “ Analytical Approach for Wear Prediction of Metallic and Ceramic Materials in Tribological Applications,” Wear, 266(3–4), pp. 476–481. [CrossRef]
Quinn, T. F. J. , 1967, “ The Effect of ‘Hot-Spot’ Temperatures on the Unlubricated Wear of Steel,” ASLE Trans., 10(2), pp. 158–168. [CrossRef]
Johnson, K. L. , 1968, “ Deformation of a Plastic Wedge by a Rigid Flat Die Under the Action of a Tangential Force,” J. Mech. Phys. Solids, 16(6), pp. 395–402. [CrossRef]
Tanaka, T. , Kyogoku, K. , and Nakahara, T. , 2000, “ An Estimation of Threshold of Mild and Severe Wear Based on Brwell-Strang's Concept by Elastic-Plastic Analysis on Rough Surface Contact,” International Tribology Conference, Nagasaki, Japan, pp. 391–396.
Pasaribu, H. R. , Sloetjes, J. W. , and Schipper, D. J. , 2004, “ The Transition of Mild to Severe Wear of Ceramics,” Wear, 256(6), pp. 585–591. [CrossRef]
Adachi, K. , Kato, K. , and Chen, N. , 1997, “ Wear Map of Ceramics,” Wear, 203–204, pp. 291–301. [CrossRef]
Metselaar, H. S. C. , Kerkwijk, B. , Mulder, E. J. , Verweij, H. , and Schipper, D. J. , 2001, “ Wear of Ceramics Due to Thermal Stress: A Thermal Severity Parameter,” Wear, 249(10–11), pp. 962–970. [CrossRef]
Bos, J. , and Moes, H. , 1995, “ Frictional Heating of Tribological Contacts,” ASME J. Tribol., 117(1), pp. 171–177. [CrossRef]
Kramer, B. M. , and Judd, P. K. , 1985, “ Computational Design of Wear Coatings,” J. Vac. Sci. Technol., A, 3(6), pp. 24–39. [CrossRef]
Johnson, D. , 1981, “ Engineering Property Data on Selected Ceramics, Single Oxides,” Vol. III, Metals and Ceramic Information Center Battelle, Columbus Laboratories, Columbus, OH.
Friedrich, C. , Berg, G. , Broszeit, E. , and Berger, C. , 1997, “Datensammlung zu Hartstoffeigenschaften (Data Collection of Hard Material Properties),” Materialwiss. Werkstofftech., 28(2), pp. 59–76.
Gee, M. , 1989, personal communication.
1998, “ Database THERSYST,” Institut für Kernenergetik und Energiesysteme (IKE), Universität Stuttgart, Stuttgart, Germany.
Telle, R. , 1993, “ Boride and Carbide Ceramics,” Materials Science and Technology A Comprehensive Treatment, Vol. 11, Wiley–VCH, Weinheim, Germany.
NIST, 1998, “ Database NISTCERAM,” NIST, Ceramic Division, Gaithersburg, MD.
Pastor, H. , 1996, personal information, Grenoble, France.


Grahic Jump Location
Fig. 1

Comparison of flash temperature models in a normalized diagram A: Archard, TK: Tian and Kennedy, KW: Kuhlmann-Wilsdorf

Grahic Jump Location
Fig. 2

Comparison of the calculated (KW), maximum flash temperature with results from literature; Brackets denote λr values, KW (1): λr = 1 and KW (40.5): λr = 40.5

Grahic Jump Location
Fig. 4

Flow diagram for temperature calculation

Grahic Jump Location
Fig. 3

Blade tip coating with abrasive SiC particles

Grahic Jump Location
Fig. 5

Predicted abrasive wear of different tip materials relative to ZrO2

Grahic Jump Location
Fig. 6

Schematic representation of pa·v curves of tribomaterials under dry sliding [41]

Grahic Jump Location
Fig. 7

Predicted pa·v diagram (It = 1.78 × 10−2 mm s−1) dot chain line: flash temperature ΔT = 500 K, dashed line: seizure

Grahic Jump Location
Fig. 8

Distance of neighbor summits l and enlarged plastic contact radius c as a function of normalized contact pressure: c, l (in μm), H = 6.3 GPa

Grahic Jump Location
Fig. 9

pH·v diagram of Eq. (32) for ball-disk results, ball: Al2O3, disk: Al2O3, μ = 0.5, elastic contact assumed




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In