Research Papers: Elastohydrodynamic Lubrication

Nodal Unsteady Inverse Elastohydrodynamic Lubrication: Axisymmetric Normal Approach

[+] Author and Article Information
J. F. Booker

Sibley School of Mechanical and
Aerospace Engineering,
Cornell University,
Ithaca, NY 14853
e-mail: booker@cornell.edu

S. Boedo

Department of Mechanical Engineering,
Rochester Institute of Technology,
Rochester, NY 14623
e-mail: sxbeme@rit.edu

1Corresponding author.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received May 21, 2017; final manuscript received November 6, 2017; published online February 6, 2018. Assoc. Editor: Mihai Arghir.

J. Tribol 140(4), 041501 (Feb 06, 2018) (7 pages) Paper No: TRIB-17-1195; doi: 10.1115/1.4038985 History: Received May 21, 2017; Revised November 06, 2017

An “inverse” formulation is described for general problems of unsteady elastohydrodynamic lubrication (EHL). Spatial discretization gives an explicit initial-value ordinary differential equation (ODE) problem with (interior) nodal film thicknesses as state variables. Numerical results are compared with published experimental results for normal approach of a spherical surface to an elastic foundation.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Booker, J. F. , Boedo, S. , and Bonneau, D. , 2010, “Conformal EHL Analysis for Engine Bearing Design: A Brief Review,” Proc. IMechE Part C J. Mech. Eng. Sci., 224(12), pp. 2648–2653. [CrossRef]
Boedo, S. , 2015, “Transient Dynamics of the Conformal Elastohydrodynamic Squeeze Film Problem,” ASME J. Tribol., 137(4), p. 041506. [CrossRef]
Booker, J. F. , 2005, “Unsteady EHL: An Inverse Hydrodynamic Formulation,” Life Cycle Tribology, D. Dowson , M. Priest , G. Dalmaz , and A. A. Lubrecht , eds., Elsevier, Amsterdam, The Netherlands, pp. 65–72. [CrossRef]
Booker, J. F. , and Shu, C. F. , 1984, “Finite Element Analysis of Transient Elasto-Hydrodynamic Lubrication,” Developments in Numerical and Experimental Methods Applied to Tribology, D. Dowson , C. M. Taylor , and M. Godet , eds., Butterworths, London, pp. 157–163.
Kumar, A. , Goenka, P. K. , and Booker, J. F. , 1990, “Modal Analysis of Elastohydrodynamic Lubrication: A Connecting Rod Application,” ASME J. Tribol., 112(3), pp. 524–534. [CrossRef]
Boedo, S. , and Booker, J. F. , 1997, “Surface Roughness and Structural Inertia in a Mode-Based Mass-Conserving Elastohydrodynamic Lubrication Model,” ASME J. Tribol., 119(3), pp. 449–455. [CrossRef]
Booker, J. F. , and Boedo, S. , 2004, “Unsteady EHL: ‘Nodal’ Versus ‘Modal’ Formulations,” IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics, Cardiff, UK, Sept. 1–3, pp. 71–80.
Kothari, M. , Booker, J. F. , and Bartel, D. L. , 1995, “Analysis of Artificial Hip Joints as Spherical Bearings,” Lubricants and Lubrication, D. Dowson , C. M. Taylor , T. H. C. Childs , and G. Dalmaz , eds., Elsevier, Amsterdam, The Netherlands, pp. 93–98; 671–672. [CrossRef]
Booker, J. F. , and Boedo, S. , 2007, “Spherical vs. cylindrical Engine Bearings,” ASME Paper No. IJTC2007-44448.
Gaman, I. D. C. , Higginson, G. R. , and Norman, R. , 1974, “Fluid Entrapment by a Soft Surface Layer,” Wear, 28(3), pp. 345–352. [CrossRef]
van Leeuwen, H. , Haagh, G. , and van Bavel, P. , 1995, “Transient EHD Lubrication Concentrated Line Contacts—Part 1: Steady-State Pure Squeeze Cases,” Lubricants and Lubrication, D. Dowson , C. M. Taylor , T. H. C. Childs , and G. Dalmaz , eds., Elsevier, Amsterdam, The Netherlands, pp. 525–543. [CrossRef]
Higginson, G. R. , and Norman, R. , 1974, “A Model Investigation of Squeeze-Film Lubrication in Animal Joints,” Phys. Med. Biol., 19(6), pp. 785–792. [CrossRef] [PubMed]
Higginson, G. R. , 1978, “Squeeze Films Between Compliant Solids,” Wear, 46(2), pp. 387–395. [CrossRef]
Johnson, K. L. , 1987, Contact Mechanics, Cambridge University Press, Cambridge, UK.
Shampine, L. F. , and Reichelt, M. W. , 1997, “The MATLAB ODE Suite,” SIAM J. Sci. Comput., 18(1), pp. 1–22. [CrossRef]
Gear, G. W. , 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, NJ, p. 253.
Boedo, S. , and Booker, J. F. , 2000, “A Mode-Based Elastohydrodynamic Lubrication Model With Elastic Journal and Sleeve,” ASME J. Tribol., 122(1), pp. 94–102. [CrossRef]
Frêne, J. , Nicolas, D. , Degueurce, B. , Berthe, D. , and Godet, M. , 1990, Lubrification Hydrodynamique: Paliers Et Butées, Editions Eyrolles, Paris, UK.
Hamrock, B. J. , 1994, Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York.
Booker, J. F. , and Huebner, K. H. , 1972, “Application of Finite-Element Methods to Lubrication: An Engineering Approach,” ASME J. Lubr. Technol., 94(4), pp. 313–323. [CrossRef]
Booker, J. F. , and Huebner, K. H. , 1976, “Erratum: ‘Application of Finite Element Methods to Lubrication: An Engineering Approach’ (ASME J. Lubr. Technol., 1972, 94(4), pp. 313–323),” ASME J. Lubr. Technol., 98(1), p. 39.
Booker, J. F. , and Boedo, S. , 2001, “Finite Element Analysis of Elastic Engine Bearing Lubrication: Theory,” Revue Européenne Des Eléments Finis, 10(6–7), pp. 705–724. [CrossRef]
Boedo, S. , 2013, “A Corrected Displacement Solution to Linearly Varying Surface Pressure Over a Triangular Region on the Elastic Half-Space,” Tribol. Int., 60, pp. 116–118. [CrossRef]


Grahic Jump Location
Fig. 1

Spatial discretization: nodal subsets

Grahic Jump Location
Fig. 2

Coordinates: film (local) and system (global)

Grahic Jump Location
Fig. 4

Elements and nodes: (a) 2D and (b) 1D

Grahic Jump Location
Fig. 5

h(x, 0, 8) and h(r, 8): 2D and 1D meshes

Grahic Jump Location
Fig. 6

h(r, t): EHL simulation and experiment

Grahic Jump Location
Fig. 7

h(0, t): EHL simulation and experiment

Grahic Jump Location
Fig. 8

h(r, t): EHL simulation and Hertz dry contact




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In