Abstract

Recent studies using high-fidelity computational fluid dynamics (CFD) have revealed high-frequency flow instabilities consistent with clinical reports of bruits and “musical murmurs”, which have been speculated to contribute to aneurysm growth and rupture. We hypothesized that harmonic flow instabilities (“spectral bandedness”) in aneurysm CFD data may be associated with rupture status. Before testing this hypothesis, we first present a novel method for quantifying and visualizing spectral bandedness in cardiovascular CFD datasets based on musical audio-processing tools. Motivated by previous studies of aneurysm hemodynamics, we also computed a selection of existing metrics that have demonstrated association with rupture in large studies. In a dataset of 50 bifurcation aneurysm geometries modeled using high-fidelity CFD, our spectral bandedness index (SBI) was the only metric significantly associated with rupture status (AUC = 0.76, p = 0.002), with a specificity of 79% (correctly predicting 19/24 unruptured cases) and sensitivity of 65% (correctly predicting 17/26 ruptured cases). Three-dimensional flow visualizations revealed coherent regions of high SBI to be associated with strong near-wall inflow jets and vortex-shedding/flutter phenomena in the aneurysm sac. We speculate that these intracycle, coherent flow instabilities may preferentially contribute to the progressive degradation of the aneurysm wall through flow-induced vibrational mechanisms, and that their absence in high-fidelity CFD may be useful for identifying intracranial aneurysms at lower risk of rupture.

References

1.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
,
2006
, “
Cerebral Aneurysms
,”
New Engl. J. Med.
,
355
(
9
), pp.
928
939
.10.1056/NEJMra052760
2.
Vlak
,
M. H. M.
,
Algra
,
A.
,
Brandenburg
,
R.
, and
Rinkel
,
G. J. E.
,
2011
, “
Prevalence of Unruptured Intracranial Aneurysms, With Emphasis on Sex, Age, Comorbidity, Country, and Time Period: A Systematic Review and Meta-Analysis
,”
Lancet Neurol.
,
10
(
7
), pp.
626
636
.10.1016/S1474-4422(11)70109-0
3.
Suarez
,
J. I.
,
Tarr
,
R. W.
, and
Selman
,
W. R.
,
2006
, “
Aneurysmal Subarachnoid Hemorrhage
,”
New Engl. J. Med.
,
354
(
4
), pp.
387
396
.10.1056/NEJMra052732
4.
Greving
,
J. P.
,
Wermer
,
M. J. H.
,
Brown
,
R. D.
,
Morita
,
A.
,
Juvela
,
S.
,
Yonekura
,
M.
,
Ishibashi
,
T.
,
Torner
,
J. C.
,
Nakayama
,
T.
,
Rinkel
,
G. J. E.
, and
Algra
,
A.
,
2014
, “
Development of the PHASES Score for Prediction of Risk of Rupture of Intracranial Aneurysms: A Pooled Analysis of Six Prospective Cohort Studies
,”
Lancet Neurol.
,
13
(
1
), pp.
59
66
.10.1016/S1474-4422(13)70263-1
5.
Backes
,
D.
,
Rinkel
,
G. J. E.
,
Laban
,
K. G.
,
Algra
,
A.
, and
Vergouwen
,
M. D. I.
,
2016
, “
Patient-and Aneurysm-Specific Risk Factors for Intracranial Aneurysm Growth: A Systematic Review and Meta-Analysis
,”
Stroke
,
47
(
4
), pp.
951
957
.10.1161/STROKEAHA.115.012162
6.
Zanaty
,
M.
,
Daou
,
B.
,
Chalouhi
,
N.
,
Starke
,
R. M.
,
Jabbour
,
P.
, and
Hasan
,
D.
,
2016
, “
Evidence That a Subset of Aneurysms Less Than 7 Mm Warrant Treatment
,”
J. Am. Heart Assoc.
,
5
(
8
), pp.
1
7
.10.1161/JAHA.116.003936
7.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
8.
Chung
,
B. J.
,
Mut
,
F.
,
Putman
,
C. M.
,
Hamzei-Sichani
,
F.
,
Brinjikji
,
W.
,
Kallmes
,
D.
,
Jimenez
,
C. M.
, and
Cebral
,
J. R.
,
2018
, “
Identification of Hostile Hemodynamics and Geometries of Cerebral Aneurysms: A Case-Control Study
,”
Am. J. Neuroradiol.
,
39
(
10
), pp.
1860
1866
.10.3174/ajnr.A5764
9.
Khan
,
M. O.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2015
, “
Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics Versus Mesh and Time-Step Resolution
,”
Am. J. Neuroradiol.
,
36
(
7
), pp.
1310
1316
.10.3174/ajnr.A4263
10.
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2014
, “
Mind the Gap: Impact of Computational Fluid Dynamics Solution Strategy on Prediction of Intracranial Aneurysm Hemodynamics and Rupture Status Indicators
,”
Am. J. Neuroradiol.
,
35
(
3
), pp.
536
543
.10.3174/ajnr.A3793
11.
Valen-Sendstad
,
K.
,
Mardal
,
K. A.
,
Mortensen
,
M.
,
Reif
,
B. A. P.
, and
Langtangen
,
H. P.
,
2011
, “
Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm
,”
J. Biomech.
,
44
(
16
), pp.
2826
2832
.10.1016/j.jbiomech.2011.08.015
12.
Ferguson
,
G. G.
,
1970
, “
Turbulence in Human Intracranial Saccular Aneurysms
,”
J. Neurosurg.
,
33
(
5
), pp.
485
97
.10.3171/jns.1970.33.5.0485
13.
Kurokawa
,
Y.
,
Abiko
,
S.
, and
Watanabe
,
K.
,
1994
, “
Noninvasive Detection of Intracranial Vascular Lesions by Recording Blood Flow Sounds
,”
Stroke
,
25
(
2
), pp.
397
402
.10.1161/01.STR.25.2.397
14.
Xu
,
L.
,
Liang
,
F.
,
Gu
,
L.
, and
Liu
,
H.
,
2018
, “
Flow Instability Detected in Ruptured Versus Unruptured Cerebral Aneurysms at the Internal Carotid Artery
,”
J. Biomech.
,
72
, pp.
187
199
.10.1016/j.jbiomech.2018.03.014
15.
Khan
,
M. O.
,
Toro Arana
,
V.
,
Najafi
,
M.
,
MacDonald
,
D. E.
,
Natarajan
,
T.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2021
, “
On the Prevalence of Flow Instabilities From High-Fidelity Computational Fluid Dynamics of Intracranial Bifurcation Aneurysms
,”
J. Biomech.
,
127
, p.
110683
.10.1016/j.jbiomech.2021.110683
16.
Balasso
,
A.
,
Fritzsche
,
M.
,
Liepsch
,
D.
,
Prothmann
,
S.
,
Kirschke
,
J. S.
,
Sindeev
,
S.
,
Frolov
,
S.
, and
Friedrich
,
B.
,
2019
, “
High-Frequency Wall Vibrations in a Cerebral Patient-Specific Aneurysm Model
,”
Biomed. Eng.
,
64
(
3
), pp.
275
284
.10.1515/bmt-2017-0142
17.
Khan
,
M. O.
,
Chnafa
,
C.
,
Gallo
,
D.
,
Molinari
,
F.
,
Morbiducci
,
U.
,
Steinman
,
D. A.
, and
Valen-Sendstad
,
K.
,
2017
, “
On the Quantification and Visualization of Transient Periodic Instabilities in Pulsatile Flows
,”
J. Biomech.
,
52
, pp.
179
182
.10.1016/j.jbiomech.2016.12.037
18.
Byrne
,
G.
,
Mut
,
F.
, and
Cebral
,
J.
,
2014
, “
Quantifying the Large-Scale Hemodynamics of Intracranial Aneurysms
,”
Am. J. Neuroradiol.
,
35
(
2
), pp.
333
338
.10.3174/ajnr.A3678
19.
Natarajan
,
T.
,
MacDonald
,
D. E.
,
Najafi
,
M.
,
Khan
,
M. O.
, and
Steinman
,
D. A.
,
2020
, “
On the Spectrographic Representation of Cardiovascular Flow Instabilities
,”
J. Biomech.
,
110
, p.
109977
.10.1016/j.jbiomech.2020.109977
20.
Aaslid
,
R.
, and
Nornes
,
H.
,
1984
, “
Musical Murmurs in Human Cerebral Arteries After Subarachnoid Hemorrhage
,”
J. Neurosurgery
,
60
(
1
), pp.
32
36
.10.3171/jns.1984.60.1.0032
21.
Aneurisk-Team
,
2012
, “
{AneuriskWeb Project Website}
,” Department of Math & Computer Science, Emory University, Atlanta, GA, accessed Feb. 7, 2022, http://ecm2.mathcs.emory.edu/aneuriskweb/index
22.
Mortensen
,
M.
, and
Valen-Sendstad
,
K.
,
2015
, “
Oasis: A High-Level/High-Performance Open Source Navier-Stokes Solver
,”
Comput. Phys. Commun.
,
188
, pp.
177
188
.10.1016/j.cpc.2014.10.026
23.
Chnafa
,
C.
,
Bouillot
,
P.
,
Brina
,
O.
,
Najafi
,
M.
,
Delattre
,
B. M. A.
,
Vargas
,
M. I.
,
Pereira
,
V. M.
, and
Steinman
,
D. A.
,
2018
, “
Errors in Power-Law Estimations of Inflow Rates for Intracranial Aneurysm CFD
,”
J. Biomech.
,
80
, pp.
159
165
.10.1016/j.jbiomech.2018.09.006
24.
Bartsch
,
M. A.
, and
Wakefield
,
G. H.
,
2005
, “
Audio Thumbnailing of Popular Music Using Chroma-Based Representations
,”
IEEE Trans. Multimedia
,
7
(
1
), pp.
96
104
.10.1109/TMM.2004.840597
25.
McFee
,
B.
,
Raffel
,
C.
,
Liang
,
D.
,
Ellis
,
D.
,
McVicar
,
M.
,
Battenberg
,
E.
, and
Nieto
,
O.
,
2015
, “
Librosa: Audio and Music Signal Analysis in Python
,”
Proceedings of the 14th Python in Science Conference, (Scipy)
, Austin, TX, July 6–12, pp.
18
24
.https://conference.scipy.org/proceedings/scipy2015/pdfs/brian_mcfee.pdf
26.
Xiang
,
J.
,
Yu
,
J.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2016
, “
Hemodynamic–Morphological Discriminant Models for Intracranial Aneurysm Rupture Remain Stable With Increasing Sample Size
,”
J. NeuroIntervent. Surg.
,
8
(
1
), pp.
104
110
.10.1136/neurintsurg-2014-011477
27.
Liang
,
L.
,
Steinman
,
D. A.
,
Brina
,
O.
,
Chnafa
,
C.
,
Cancelliere
,
N. M.
, and
Pereira
,
V. M.
,
2019
, “
Towards the Clinical Utility of CFD for Assessment of Intracranial Aneurysm Rupture—A Systematic Review and Novel Parameter-Ranking Tool
,”
J. NeuroIntervent. Surg.
,
11
(
2
), pp.
153
158
.10.1136/neurintsurg-2018-014246
28.
Mut
,
F.
,
Löhner
,
R.
,
Chien
,
A.
,
Tateshima
,
S.
,
Viñuela
,
F.
,
Putman
,
C.
, and
Cebral
,
J. R.
,
2011
, “
Computational Hemodynamics Framework for the Analysis of Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
6
), pp.
822
839
.10.1002/cnm.1424
29.
Takao
,
H.
,
Murayama
,
Y.
,
Otsuka
,
S.
,
Qian
,
Y.
,
Mohamed
,
A.
,
Masuda
,
S.
,
Yamamoto
,
M.
, and
Abe
,
T.
,
2012
, “
Hemodynamic Differences Between Unruptured and Ruptured Intracranial Aneurysms During Observation
,”
Stroke
,
43
(
5
), pp.
1436
1439
.10.1161/STROKEAHA.111.640995
30.
Grunkemeier
,
G. L.
, and
Wu
,
Y.
,
2004
, “
Bootstrap Resampling Methods: Something for Nothing?
,”
Ann. Thorac. Surg.
,
77
(
4
), pp.
1142
1144
.10.1016/j.athoracsur.2004.01.005
31.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
,
1986
, “Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro,”
Proc. Natl. Acad. Sci. USA
, 83(7), pp.
2114
2117
.10.1073/pnas.83.7.2114
32.
Feaver
,
R. E.
,
Gelfand
,
B. D.
, and
Blackman
,
B. R.
,
2013
, “
Human Haemodynamic Frequency Harmonics Regulate the Inflammatory Phenotype of Vascular Endothelial Cells
,”
Nat. Commun.
,
4
(
1
), pp. 1–11.10.1038/ncomms2530
33.
Serra
,
X.
, and
Smith
,
J. O.
,
1990
, “
Spectral Modeling Synthesis. A Sound Analysis/Synthesis System Based on a Deterministic Plus Stochastic Decomposition
,”
Comput. Music J.
,
14
(
4
), pp.
12
24
.10.2307/3680788
34.
Temor
,
L.
,
Macdonald
,
D. E.
,
Coppin
,
P. W.
, and
Steinman
,
D. A.
,
2021
, “
Perceptually-Motivated Sonification of Spatiotemporally-Dynamic CFD Data
,” 26th International Conference on Auditory Display (
ICAD 2021
), June 25–28, 2021, Virtual.http://openresearch.ocadu.ca/id/eprint/3485/
35.
Baharoglu
,
M. I.
,
Lauric
,
A.
,
Gao
,
B. L.
, and
Malek
,
A. M.
,
2012
, “
Identification of a Dichotomy in Morphological Predictors of Rupture Status Between Sidewall- and Bifurcation-Type Intracranial Aneurysms: Clinical Article
,”
J. Neurosurg.
,
116
(
4
), pp.
871
881
.10.3171/2011.11.JNS11311
36.
Najafi
,
M.
,
Cancelliere
,
N. M.
,
Brina
,
O.
,
Bouillot
,
P.
,
Vargas
,
M. I.
,
Delattre
,
B. M. A.
,
Pereira
,
V. M.
, and
Steinman
,
D. A.
,
2021
, “
How Patient-Specific Do Internal Carotid Artery Inflow Rates Need to Be for Computational Fluid Dynamics of Cerebral Aneurysms?
,”
J. NeuroIntervent. Surg.
,
13
(
5
), pp.
459
464
.10.1136/neurintsurg-2020-015993
You do not currently have access to this content.