Abstract

This paper presents Jacobi stability analysis of 23 simple chaotic systems with only one Lyapunov stable equilibrium by Kosambi–Cartan–Chern theory, and analyzes the chaotic behavior of these systems from the geometric viewpoint. Different from Lyapunov stability, the unique equilibrium for each system is always Jacobi unstable. Moreover, the dynamical behaviors of deviation vector near equilibrium are discussed to reveal the onset of chaos for these 23 systems and show geometrically the coexistence of unique Lyapunov stable equilibrium and chaotic attractor for each system. The obtaining results show that these chaotic systems are not robust to small perturbations of the equilibrium, indicating that the systems are extremely sensitive to the internal environment. This reveals that the chaotic flows generated by these systems may be related to Jacobi instability of the equilibrium.

References

1.
Yang
,
Q.
,
Chen
,
G.
, and
Huang
,
K.
,
2007
, “
Chaotic Attractors of the Conjugate Lorenz-Type System
,”
Int. J. Bifurcation Chaos
,
17
(
11
), pp.
3929
3949
.10.1142/S0218127407019792
2.
Yang
,
Q.
, and
Chen
,
G.
,
2008
, “
A Chaotic System With One Saddle and Two Stable Node-Foci
,”
Int. J. Bifurcation Chaos
,
18
(
05
), pp.
1393
1414
.10.1142/S0218127408021063
3.
Liu
,
Y.
,
Huang
,
X.
, and
Zheng
,
J.
,
2018
, “
Chaos and Bifurcation in the Controlled Chaotic System
,”
Open Math.
,
16
(
1
), pp.
1255
1265
.10.1515/math-2018-0105
4.
Liu
,
Y.
,
Pang
,
S.
, and
Chen
,
D.
,
2013
, “
An Unusual Chaotic System and Its Control
,”
Math. Comput. Modell.
,
57
(
9–10
), pp.
2473
2493
.10.1016/j.mcm.2012.12.006
5.
Liu
,
Y.
, and
Pang
,
W.
,
2012
, “
Dynamics of the General Lorenz Family
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1595
1611
.10.1007/s11071-011-0090-7
6.
Yang
,
Q.
,
Wei
,
Z.
, and
Chen
,
G.
,
2010
, “
An Unusual 3D Autonomous Quadratic Chaotic System With Two Stable Node-Foci
,”
Int. J. Bifurcation Chaos
,
20
(
04
), pp.
1061
1083
.10.1142/S0218127410026320
7.
Wei
,
Z.
, and
Yang
,
Q.
,
2011
, “
Dynamical Analysis of a New Autonomous 3D Chaotic System Only With Stable Equilibria
,”
Nonlinear Anal. Real World Appl.
,
12
(
1
), pp.
106
118
.10.1016/j.nonrwa.2010.05.038
8.
Wang
,
X.
, and
Chen
,
G.
,
2012
, “
A Chaotic System With Only One Stable Equilibrium
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
3
), pp.
1264
1272
.10.1016/j.cnsns.2011.07.017
9.
Khalaf
,
A. J. M.
,
Tomasz
,
K.
,
Karthikeyan
,
R.
,
Ahmed
,
A.
,
Tasawar
,
H.
, and
Viet-Thanh
,
P.
,
2018
, “
A New Three-Dimensional Chaotic Flow With One Stable Equilibrium: Dynamical Properties and Complexity Analysis
,”
Open Phys.
,
16
(
1
), pp.
260
265
.10.1515/phys-2018-0037
10.
Pham
,
V. T.
,
Jafari
,
S.
,
Kapitaniak
,
T.
,
Volos
,
C.
, and
Kingni
,
S. T.
,
2017
, “
Generating a Chaotic System With One Stable Equilibrium
,”
Int. J. Bifurcation Chaos
,
27
(
04
), p.
1750053
.10.1142/S0218127417500535
11.
Molaie
,
M.
,
Jafari
,
S.
,
Sprott
,
J. C.
, and
Hashemi Golpayegani
,
S. M. R.
,
2013
, “
Simple Chaotic Flows With One Stable Equilibrium
,”
Int. J. Bifurcation Chaos
,
23
(
11
), p.
1350188
.10.1142/S0218127413501885
12.
Kosambi
,
D. D.
,
1933
, “
Parallelism and Path-Spaces
,”
Math. Z.
,
37
(
1
), pp.
608
618
.10.1007/BF01474602
13.
Cartan
,
E.
, and
Kosambi
,
D. D.
,
1933
, “
Observations Sur le Mémoire Précédent
,”
Mathematische Z.
,
37
(
1
), pp.
619
622
.10.1007/BF01474603
14.
Chern
,
S. S.
,
1939
, “
Sur la Géométrie D'un Système D'équations Différentielles du Second Ordre
,”
Bull. Des Ences Math.
,
63
(1), pp.
206
212
.10.1007/978-1-4614-9343-3-6
15.
Sabau
,
S. V.
,
2005
, “
Systems Biology and Deviation Curvature Tensor
,”
Nonlinear Anal. Real World Appl.
,
6
(
03
), pp.
563
587
.10.1016/j.nonrwa.2004.12.012
16.
Böhmer
,
C. G.
,
Harko
,
T.
, and
Sabau
,
S. V.
,
2012
, “
Jacobi Stability Analysis of Dynamical Systems—Applications in Gravitation and Cosmology
,”
Adv. Theor. Math. Phys.
,
16
(
4
), pp.
1145
1196
.10.4310/ATMP.2012.v16.n4.a2
17.
Huang
,
Q.
,
Liu
,
A.
, and
Liu
,
Y.
,
2019
, “
Jacobi Stability Analysis of the Chen System
,”
Int. J. Bifurcation Chaos
,
29
(
10
), p.
1950139
.10.1142/S0218127419501396
18.
Liu
,
C.
,
Liu
,
L.
, and
Liu
,
T.
,
2009
, “
A Novel Three-Dimensional Autonomous Chaos System
,”
Acta Phys. Sin.
,
39
(
4
), pp.
1950
1958
.10.1016/j.chaos.2007.06.079
19.
Liu
,
Y.
, and
Yang
,
Q.
,
2010
, “
Dynamics of a New Lorenz-Like Chaotic System
,”
Nonlinear Anal. Real World Appl.
,
11
(
4
), pp.
2563
2572
.10.1016/j.nonrwa.2009.09.001
20.
Harko
,
T.
,
Ho
,
C. Y.
,
Leung
,
C. S.
, and
Yip
,
S.
,
2015
, “
Jacobi Stability Analysis of the Lorenz System
,”
Int. J. Geom. Methods Mod. Phys.
,
12
(
07
), p.
1550081
.10.1142/S0219887815500814
21.
Gupta
,
M. K.
, and
Yadav
,
C. K.
,
2016
, “
Jacobi Stability Analysis of Rikitake System
,”
Int. J. Geom. Methods Mod. Phys.
,
13
(
07
), p.
1650098
.10.1142/S0219887816500985
22.
Gupta
,
M. K.
, and
Yadav
,
C. K.
,
2017
, “
Jacobi Stability Analysis of Rössler System
,”
Int. J. Bifurcation Chaos
,
27
(
04
), pp.
1750056
1750622
.10.1142/S0218127417500560
23.
Gupta
,
M. K.
, and
Yadav
,
C. K.
,
2019
, “
Rabinovich-Fabrikant System in View Point of KCC Theory in Finsler Geometry
,”
J. Interdiscip. Math.
,
22
(
3
), pp.
219
223
.10.1080/09720502.2019.1614249
24.
Kumar
,
M.
,
Mishra
,
T. N.
, and
Tiwari
,
B.
,
2019
, “
Stability Analysis of Navier-Stokes System
,”
Int. J. Geom. Methods Mod. Phys.
,
16
(
10
), p.
1950157
.10.1142/S0219887819501573
25.
Feng
,
C.
,
Huang
,
Q.
, and
Liu
,
Y.
,
2020
, “
Jacobi Analysis for an Unusual 3D Autonomous System
,”
Int. J. Geom. Methods Mod. Phys.
,
17
(
04
), p.
2050062
.10.1142/S0219887820500620
26.
Abolghasem
,
H.
,
2012
, “
Jacobi Stability of Circular Orbits in a Central Force
,”
J. Dyn. Syst. Geom. Theor.
,
10
(
2
), pp.
197
214
.10.1080/1726037X.2012.10698621
27.
Abolghasem
,
H.
,
2012
, “
Liapunov Stability Versus Jacobi Stability
,”
J. Dyn. Syst. Geom. Theor.
,
10
(
1
), pp.
13
32
.10.1080/1726037X.2012.10698604
28.
Abolghasem
,
H.
,
2013
, “
Jacobi Stability of Hamiltonian System
,”
Int. J. Pure Appl. Math.
,
87
(
01
), pp.
181
194
.10.12732/ijpam.v87i1.11
29.
Abolghasem
,
H.
,
2013
, “
Stability of Circular Orbits in Schwarzschild Spacetime
,”
Int. J. Differ. Equations Appl.
,
12
(
3
), pp.
131
147
. 10.12732/ijdea.v12i3.1010
30.
Boehmer, C. G., Harko, T., and Sabau, S. V., 2010, “Jacobi Stability Analysis of Dynamical Systems—Applications in Gravitation and Cosmology,”
Adv. Theor. Math, Phys.
, 4, 1145–1196.10.4310/ATMP.2012.v16.n4
31.
Böhmer
,
C. G.
, and
Harko
,
T.
,
2010
, “
Nonlinear Stability Analysis of the Emden-Fowler Equation
,”
J. Nonlinear Math. Phys.
,
17
(
4
), pp.
503
516
.10.1142/S1402925110001100
32.
Yajima
,
T.
, and
Yamasaki
,
K.
,
2016
, “
Jacobi Stability for Dynamical Systems of Two-Dimensional Second-Order Differential Equations and Application to Overhead Crane System
,”
Int. J. Geom. Methods Mod. Phys.
,
13
(
04
), pp.
1650045
1650120
.10.1142/S0219887816500456
33.
Sabau
,
S. V.
,
2005
, “
Some Remarks on Jacobi Stability
,”
Nonlinear Anal. Theory Methods Appl.
,
63
(
5–7
), pp.
143
153
.10.1016/j.na.2005.02.061
34.
Chen
,
B.
,
Liu
,
Y.
,
Wei
,
Z.
, and
Feng
,
C.
,
2020
, “
New Insights Into a Chaotic System With Only a Lyapunov Stable Equilibrium
,”
Math. Methods Appl. Sci.
,
43
(
15
), pp.
9262
9218
.10.1002/mma.6619
35.
Liu
,
A.
,
Chen
,
B.
, and
Wei
,
Y.
,
2020
, “
Jacobi Analysis of a Segmented Disc Dynamo System
,”
Int. J. Geom. Methods Mod. Phys.
,
17
(
14
), p.
2050205
.10.1142/S0219887820502059
You do not currently have access to this content.