Abstract

Industrial prognostics focuses on utilizing degradation signals to forecast and continually update the residual useful life of complex engineering systems. However, existing prognostic models for systems with multiple failure modes face several challenges in real-world applications, including overlapping degradation signals from multiple components, the presence of unlabeled historical data, and the similarity of signals across different failure modes. To tackle these issues, this research introduces two prognostic models that integrate the mixture (log)-location-scale distribution with deep learning. This integration facilitates the modeling of overlapping degradation signals, eliminates the need for explicit failure mode identification, and utilizes deep learning to capture complex nonlinear relationships between degradation signals and residual useful lifetimes. Numerical studies validate the superior performance of these proposed models compared to existing methods.

References

1.
Gebraeel
,
N. Z.
,
Lawley
,
M. A.
,
Li
,
R.
, and
Ryan
,
J. K.
,
2005
, “
Residual-Life Distributions From Component Degradation Signals: A Bayesian Approach
,”
IiE Trans.
,
37
(
6
), pp.
543
557
.
2.
Fang
,
X.
,
Paynabar
,
K.
, and
Gebraeel
,
N.
,
2017
, “
Multistream Sensor Fusion-Based Prognostics Model for Systems With Single Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
159
, pp.
322
331
.
3.
Zhou
,
C.
, and
Fang
,
X.
,
2024
, “
A Supervised Tensor Dimension Reduction-Based Prognostic Model for Applications With Incomplete Imaging Data
,”
INFORMS J. Data Sci.
,
3
(
1
), pp.
84
104
.
4.
Zhou
,
C.
,
Su
,
Y.
,
Xia
,
T.
, and
Fang
,
X.
,
2023
, “
Federated Multilinear Principal Component Analysis with Applications in Prognostics
,”
arXiv Preprint
. https://arxiv.org/abs/2312.06050
5.
Shi
,
J.
,
Yu
,
T.
,
Goebel
,
K.
, and
Wu
,
D.
,
2021
, “
Remaining Useful Life Prediction of Bearings Using Ensemble Learning: The Impact of Diversity in Base Learners and Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021004
.
6.
Su
,
Y.
, and
Fang
,
X.
,
2024
, “
A Two-Stage Federated Learning Approach for Industrial Prognostics Using Large-Scale High-Dimensional Signals
,”
arXiv Preprint
. https://arxiv.org/abs/2410.11101
7.
He
,
B.
,
Liu
,
L.
, and
Zhang
,
D.
,
2021
, “
Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030801
.
8.
Ibrahim
,
M.
,
Rozas
,
H.
, and
Gebraeel
,
N.
,
2024
, “
An Integrated Detection-Prognostics Methodology for Components With Intermittent Faults
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
6
), p.
061003
.
9.
Chehade
,
A.
,
Song
,
C.
,
Liu
,
K.
,
Saxena
,
A.
, and
Zhang
,
X.
,
2018
, “
A Data-Level Fusion Approach for Degradation Modeling and Prognostic Analysis Under Multiple Failure Modes
,”
J. Qual. Technol.
,
50
(
2
), pp.
150
165
.
10.
Kundu
,
P.
,
Chopra
,
S.
, and
Lad
,
B. K.
,
2019
, “
Multiple Failure Behaviors Identification and Remaining Useful Life Prediction of Ball Bearings
,”
J. Intell. Manuf.
,
30
, pp.
1795
1807
.
11.
Ragab
,
A.
,
Yacout
,
S.
,
Ouali
,
M.-S.
, and
Osman
,
H.
,
2019
, “
Prognostics of Multiple Failure Modes in Rotating Machinery Using a Pattern-Based Classifier and Cumulative Incidence Functions
,”
J. Intell. Manuf.
,
30
(
1
), pp.
255
274
.
12.
Meeker
,
W. Q.
, and
Escobar
,
L. A.
,
2014
,
Statistical Methods for Reliability Data
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Taylor
,
J. M.
,
1995
, “
Semi-Parametric Estimation in Failure Time Mixture Models
,”
Biometrics
,
51
(
3
), pp.
899
907
.
14.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
15.
da Costa
,
P. R. d. O.
,
Akçay
,
A.
,
Zhang
,
Y.
, and
Kaymak
,
U.
,
2020
, “
Remaining Useful Lifetime Prediction Via Deep Domain Adaptation
,”
Reliab. Eng. Syst. Saf.
,
195
, p.
106682
.
16.
Nguyen
,
K. T.
,
Medjaher
,
K.
, and
Gogu
,
C.
,
2022
, “
Probabilistic Deep Learning Methodology for Uncertainty Quantification of Remaining Useful Lifetime of Multi-Component Systems
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108383
.
17.
Nejjar
,
I.
,
Geissmann
,
F.
,
Zhao
,
M.
,
Taal
,
C.
, and
Fink
,
O.
,
2024
, “
Domain Adaptation Via Alignment of Operation Profile for Remaining Useful Lifetime Prediction
,”
Reliab. Eng. Syst. Saf.
,
242
, p.
109718
.
18.
Zhang
,
J.
,
Li
,
X.
,
Tian
,
J.
,
Jiang
,
Y.
,
Luo
,
H.
, and
Yin
,
S.
,
2023
, “
A Variational Local Weighted Deep Sub-Domain Adaptation Network for Remaining Useful Life Prediction Facing Cross-Domain Condition
,”
Reliab. Eng. Syst. Saf.
,
231
, p.
108986
.
19.
Malhotra
,
P.
,
Vishnu
,
T.
,
Ramakrishnan
,
A.
,
Anand
,
G.
,
Vig
,
L.
,
Agarwal
,
P.
, and
Shroff
,
G.
,
2016
, “
Multi-Sensor Prognostics Using an Unsupervised Health Index Based on LSTM Encoder-Decoder
,”
arXiv Preprint
. arXiv.1608.06154
20.
Kim
,
M.
, and
Liu
,
K.
,
2020
, “
A Bayesian Deep Learning Framework for Interval Estimation of Remaining Useful Life in Complex Systems by Incorporating General Degradation Characteristics
,”
IISE Trans.
,
53
(
3
), pp.
326
340
.
21.
Ellefsen
,
A. L.
,
Bjørlykhaug
,
E.
,
Æsøy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
240
251
.
22.
Yuan
,
M.
,
Wu
,
Y.
, and
Lin
,
L.
,
2016
, “
Fault Diagnosis and Remaining Useful Life Estimation of Aero Engine Using LSTM Neural Network
,”
IEEE International Conference on Aircraft Utility Systems (AUS)
,
Beijing, China
,
Oct. 10–12
, IEEE, pp.
135
140
.
23.
Liu
,
L.
,
Song
,
X.
, and
Zhou
,
Z.
,
2022
, “
Aircraft Engine Remaining Useful Life Estimation Via a Double Attention-Based Data-Driven Architecture
,”
Reliab. Eng. Syst. Saf.
,
221
, p.
108330
.
24.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
25.
Hochreiter
,
S.
,
Bengio
,
Y.
,
Frasconi
,
P.
, and
Schmidhuber
,
J.
,
2001
,
Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies
,
IEEE Press
,
New York
, pp.
237
243
.
26.
Greff
,
K.
,
Srivastava
,
R. K.
,
Koutník
,
J.
,
Steunebrink
,
B. R.
, and
Schmidhuber
,
J.
,
2016
, “
LSTM: A Search Space Odyssey
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2222
2232
.
27.
Olah
,
C.
,
2015
,
28.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv Preprint
.
29.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, IEEE, pp.
1
9
.
30.
Heimes
,
F. O.
,
2008
, “
Recurrent Neural Networks for Remaining Useful Life Estimation
,”
2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, IEEE, pp.
1
6
.
31.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
32.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
Thirteenth International Conference on Artificial Intelligence and Statistics
,
Sardinia, Italy
,
May 13–15
, pp.
249
256
.
33.
Clevert
,
D.-A.
,
Unterthiner
,
T.
, and
Hochreiter
,
S.
,
2015
, “
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
,”
arXiv Preprint
.
34.
Zhang
,
C.
,
Lim
,
P.
,
Qin
,
A. K.
, and
Tan
,
K. C.
,
2016
, “
Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2306
2318
.
35.
Zheng
,
S.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life Estimation
,”
2017 IEEE International Conference on Prognostics and Health Management
,
Dallas, TX
,
June 19–21
, IEEE, pp.
88
95
.
36.
Li
,
H.
,
Zhao
,
W.
,
Zhang
,
Y.
, and
Zio
,
E.
,
2020
, “
Remaining Useful Life Prediction Using Multi-Scale Deep Convolutional Neural Network
,”
Appl. Soft. Comput.
,
89
, p.
106113
.
37.
Ragab
,
M.
,
Chen
,
Z.
,
Wu
,
M.
,
Kwoh
,
C.-K.
,
Yan
,
R.
, and
Li
,
X.
,
2021
, “
Attention-Based Sequence to Sequence Model for Machine Remaining Useful Life Prediction
,”
Neurocomputing
,
466
, pp.
58
68
.
38.
Xu
,
D.
,
Qiu
,
H.
,
Gao
,
L.
,
Yang
,
Z.
, and
Wang
,
D.
,
2022
, “
A Novel Dual-Stream Self-Attention Neural Network for Remaining Useful Life Estimation of Mechanical Systems
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108444
.
39.
Sharma
,
V.
,
Sharma
,
D.
, and
Anand
,
A.
,
2023
, “
Hybrid Multi-Scale Convolutional Long Short-Term Memory Network for Remaining Useful Life Prediction and Offset Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041006
.
40.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
.
41.
Liu
,
K.
,
Gebraeel
,
N. Z.
, and
Shi
,
J.
,
2013
, “
A Data-Level Fusion Model for Developing Composite Health Indices for Degradation Modeling and Prognostic Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
3
), pp.
652
664
.
42.
Fang
,
X.
,
Yan
,
H.
,
Gebraeel
,
N.
, and
Paynabar
,
K.
,
2021
, “
Multi-Sensor Prognostics Modeling for Applications With Highly Incomplete Signals
,”
IISE Trans.
,
53
(
5
), pp.
597
613
.
You do not currently have access to this content.