This paper studies the consensus problem of networked multi-agent systems (NMASs). Distributed delays are considered in the agent dynamics, and we propose a new type of impulsive consensus protocols that also takes into account of distributed delays. A novel method is developed to estimate the relation between the agent states at the impulsive instants and the distributed-delayed agent states, which helps to use the Razumikhin-type stability result to investigate the consensus of NMASs with distributed-delayed impulses. Sufficient conditions are established to guarantee that the network consensus can be reached via the proposed consensus protocols with fixed and switching topologies, respectively. Numerical simulations are also provided to demonstrate our theoretical results.

References

1.
Cortes
,
J.
, and
Bullo
,
F.
,
2005
, “
Coordination and Geometric Optimization Via Distributed Dynamical Systems
,”
SIAM J. Control Optim.
,
44
(
5
), pp.
1543
1551
.
2.
Cucker
,
F.
, and
Smale
,
S.
,
2007
, “
Emergent Behavior in Flocks
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
852
862
.
3.
Hegselmann
,
R.
, and
Krause
,
U.
,
2002
, “
Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation
,”
J. Artif. Soc. Soc. Simul.
,
5
(
3
), pp.
1
33
.http://jasss.soc.surrey.ac.uk/5/3/2.html
4.
Tsitsiklis
,
J.
,
Bertsekas
,
D.
, and
Athans
,
M.
,
1986
, “
Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms
,”
IEEE Trans. Autom. Control
,
31
(
9
), pp.
803
812
.
5.
Ge
,
X.
, and
Han
,
Q.-L.
,
2017
, “
Consensus of Multiagent Systems Subject to Partially Accessible and Overlapping Markovian Network Topologies
,”
IEEE Trans. Cybern.
,
47
(
8
), pp.
1807
1819
.
6.
Ge
,
X.
,
Han
,
Q.-L.
, and
Yang
,
F.
,
2017
, “
Event-Based Set-Membership Leader-Following Consensus of Networked Multi-Agent Systems Subject to Limited Communication Resources and Unknown-But-Bounded Noise
,”
IEEE Trans. Ind. Electron.
,
64
(
6
), pp.
5045
5054
.
7.
Ge
,
X.
,
Yang
,
F.
, and
Han
,
Q.-L.
,
2017
, “
Distributed Networked Control Systems: A Brief Overview
,”
Inf. Sci.
,
380
, pp.
117
131
.
8.
Zhang
,
X.-M.
,
Han
,
Q.-L.
, and
Yu
,
X.
,
2016
, “
Survey on Recent Advances in Networked Control Systems
,”
IEEE Trans. Ind. Inf.
,
12
(
5
), pp.
1740
1752
.
9.
Nedic
,
A.
,
Ozdaglar
,
A.
, and
Parrilo
,
P.
,
2010
, “
Constrained Consensus and Optimization in Multi-Agent Networks
,”
IEEE Trans. Autom. Control
,
55
(
4
), pp.
922
938
.
10.
Olfati-Saber
,
R.
,
Fax
,
J.
, and
Murray
,
R.
,
2007
, “
Consensus and Cooperation in Networked Multi-Agent Systems
,”
Proc. IEEE
,
95
(
1
), pp.
215
233
.
11.
Ren
,
W.
, and
Beard
,
R.
,
2005
, “
Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
655
661
.
12.
Bliman
,
P.
, and
Ferrari-Trecate
,
G.
,
2008
, “
Average Consensus Problems in Networks of Agents With Delayed Communications
,”
Automatica
,
44
(
8
), pp.
1985
1995
.
13.
Seyboth
,
G.
,
Dimarogonas
,
D.
, and
Johansson
,
K.
,
2013
, “
Event-Based Broadcasting for Multi-Agent Average Consensus
,”
Automatica
,
49
(
1
), pp.
245
252
.
14.
Morarescu
,
I.
,
Martin
,
A.
,
Girard
,
A.
, and
Muller-Gueudin
,
A.
,
2016
, “
Coordination in Networks of Linear Impulsive Agents
,”
IEEE Trans. Autom. Control
,
61
(
9
), pp.
2402
2415
.
15.
Guan
,
Z.-H.
,
Wu
,
Y.
, and
Feng
,
G.
,
2012
, “
Consensus Analysis Based on Impulsive Systems in Multiagent Networks
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
59
(
1
), pp.
170
178
.
16.
Guan
,
Z.-H.
,
Liu
,
Z.-W.
,
Feng
,
G.
, and
Jian
,
M.
,
2012
, “
Impulsive Consensus Algorithms for Second-Order Multi-Agent Networks With Sampled Information
,”
Automatica
,
48
(
7
), pp.
1397
1404
.
17.
Liu
,
J.
,
Guo
,
L.
,
Fu
,
M.
,
Xu
,
Z.
, and
Yang
,
Y.
,
2016
, “
Leader-Following Consensus of Multi-Agent Systems With Delayed Impulsive Control
,”
IMA J. Math. Control Inf.
,
33
(
1
), pp.
137
146
.
18.
Hu
,
H.-X.
,
Liu
,
A.
,
Xuan
,
Q.
,
Yu
,
L.
, and
Xie
,
G.
,
2013
, “
Second-Order Consensus of Multi-Agent Systems in the Cooperation Competition Network With Switching Topologies: A Time-Delayed Impulsive Control Approach
,”
Syst. Control Lett.
,
62
(
12
), pp.
1125
1135
.
19.
Wang
,
Y.
, and
Yi
,
J.
,
2015
, “
Consensus in Second-Order Multi-Agent Systems Via Impulsive Control Using Position-Only Information With Heterogeneous Delays
,”
IET Control Theory Appl.
,
9
(
3
), pp.
336
345
.
20.
Wu
,
Q.
,
Zhou
,
J.
, and
Xiang
,
L.
,
2012
, “
Impulsive Consensus Seeking in Directed Networks of Multi-Agent Systems With Communication Delays
,”
Int. J. Syst. Sci.
,
43
(
8
), pp.
1479
1491
.
21.
Liu
,
X.
,
Zhang
,
K.
, and
Xie
,
W.
,
2017
, “
Consensus Seeking in Multi-Agent Systems Via Hybrid Protocols With Impulse Delays
,”
Nonlinear Anal.: Hybrid Syst.
,
25
, pp.
90
98
.
22.
Domoshnitskya
,
A.
, and
Fridman
,
E.
,
2016
, “
A Positivity-Based Approach to Delay-Dependent Stability of Systems With Large Time-Varying Delays
,”
Syst. Control Lett.
,
97
, pp.
139
148
.
23.
Scarciotti
,
G.
, and
Astolf
,
A.
,
2016
, “
Model Reduction of Neutral Linear and Nonlinear Time-Invariant Time-Delay Systems With Discrete and Distributed Delays
,”
IEEE Trans. Autom. Control
,
61
(
6
), pp.
1438
1451
.
24.
Briat
,
C.
, and
Khammash
,
M.
,
2016
, “
Interval Peak-to-Peak Observers for Continuous- and Discrete-Time Systems With Persistent Inputs and Delays
,”
Automatica
,
74
, pp.
206
213
.
25.
Sipahi
,
R.
,
Atay
,
F.
, and
Niculescu
,
S.-I.
,
2007
, “
Stability of Traffic Flow Behavior With Distributed Delays Modeling the Memory Effects of the Drivers
,”
SIAM J. Appl. Math.
,
68
(
3
), pp.
738
759
.
26.
Michiels
,
W.
,
Morarescu
,
C.-I.
, and
Niculescu
,
S.-I.
,
2009
, “
Consensus Problems With Distributed Delays, With Application to Traffic Flow Models
,”
SIAM J. Control Optim.
,
48
(
1
), pp.
77
101
.
27.
Chen
,
W.
, and
Zheng
,
W.
,
2011
, “
Exponential Stability of Nonlinear Time-Delay Systems With Delayed Impulse Effects
,”
Automatica
,
47
(
5
), pp.
1075
1083
.
28.
Khadra
,
A.
,
Liu
,
X.
, and
Shen
,
X.
,
2009
, “
Analyzing the Robustness of Impulsive Synchronization Coupled by Delayed Impulses
,”
IEEE Trans. Autom. Control
,
4
(
4
), pp.
923
928
.
29.
Zhang
,
K.
,
Liu
,
X.
, and
Xie
,
W.
,
2016
, “
Pinning Stabilization of Cellular Neural Networks With Time-Delay Via Delayed Impulses
,”
Mathematical and Computational Approaches in Advancing Modern Science and Engineering
,
J.
Belair
,
I.
Frigaard
,
H.
Kunze
,
R.
Makarov
,
R.
Melnik
, and
R.
Spiteri
, eds.,
Springer
,
Cham, Switzerland
, pp.
775
785
.
30.
Liu
,
X.
,
Zhang
,
K.
, and
Xie
,
W.
,
2016
, “
Stabilization of Time-Delay Neural Networks Via Delayed Pinning Impulses
,”
Chaos, Solitons Fractals
,
93
, pp.
223
234
.
31.
Liu
,
X.
, and
Zhang
,
K.
,
2016
, “
Synchronization of Linear Dynamical Networks on Time Scales: Pinning Control Via Delayed Impulses
,”
Automatica
,
72
, pp.
147
152
.
32.
Chen
,
W.
, and
Zheng
,
W.
,
2007
, “
Delay-Dependent Robust Stabilization for Uncertain Neutral Systems With Distributed Delays
,”
Automatica
,
43
(
1
), pp.
95
104
.
33.
Fridman
,
E.
,
2001
, “
New Lyapunovkrasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
,
43
(
4
), pp.
309
319
.
34.
Ballinger
,
G.
, and
Liu
,
X.
,
1999
, “
Existence and Uniqueness Results for Impulsive Delay Differential Equations
,”
Dyn. Contin. Discrete Impulsive Syst., Ser. A: Math. Anal.
,
5
(
1–4
), pp.
579
591
.http://monotone.uwaterloo.ca/~journal/volumes/v51999.html
35.
Halanay
,
A.
,
1966
,
Differential Equations: Stability, Oscillations, Time Lags
,
Academic Press
,
New York
.
You do not currently have access to this content.