Abstract

A safety-critical measure of legged locomotion performance is a robot's ability to track its desired time-varying position trajectory in an environment, which is herein termed as “global-position tracking.” This paper introduces a nonlinear control approach that achieves asymptotic global-position tracking for three-dimensional (3D) bipedal robots. Designing a global-position tracking controller presents a challenging problem due to the complex hybrid robot model and the time-varying desired global-position trajectory. Toward tackling this problem, the first main contribution is the construction of impact invariance to ensure all desired trajectories respect the foot-landing impact dynamics, which is a necessary condition for realizing asymptotic tracking of hybrid walking systems. Thanks to their independence of the desired global position, these conditions can be exploited to decouple the higher-level planning of the global position and the lower-level planning of the remaining trajectories, thereby greatly alleviating the computational burden of motion planning. The second main contribution is the Lyapunov-based stability analysis of the hybrid closed-loop system, which produces sufficient conditions to guide the controller design for achieving asymptotic global-position tracking during fully actuated walking. Simulations and experiments on a 3D bipedal robot with twenty revolute joints confirm the validity of the proposed control approach in guaranteeing accurate tracking.

References

1.
Vukobratović
,
M.
,
Borovac
,
B.
, and
Šurdilović
,
D.
,
2001
, “
Zero Moment Point-Proper Interpretation and New Applications
,”
Proceedings of IEEE International Conference on Humanoid Robots
, Tokyo, Japan, Nov. 22–24, pp.
237
244
.
2.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
Proceedings of IEEE International Conference Robotics Automation
, Taipei, Taiwan, Sept. 14–19, pp.
1620
1626
.10.1109/ROBOT.2003.1241826
3.
Kim
,
J.-Y.
,
Park
,
I.-W.
, and
Oh
,
J.-H.
,
2006
, “
Experimental Realization of Dynamic Walking of the Biped Humanoid Robot KHR-2 Using Zero Moment Point Feedback and Inertial Measurement
,”
Adv. Robot.
,
20
(
6
), pp.
707
736
.10.1163/156855306777361622
4.
Golliday
,
C.
, and
Hemami
,
H.
,
1977
, “
An Approach to Analyzing Biped Locomotion Dynamics and Designing Robot Locomotion Controls
,”
IEEE Trans. Automat. Contr.
,
22
(
6
), pp.
963
972
.10.1109/TAC.1977.1101650
5.
Hürmüzlü
,
Y.
, and
Moskowitz
,
G. D.
,
1986
, “
The Role of Impact in the Stability of Bipedal Locomotion
,”
Dyn. Stabil. Syst.
,
1
(
3
), pp.
217
234
.10.1080/02681118608806015
6.
Bhounsule
,
P. A.
,
Zamani
,
A.
, and
Pusey
,
J.
,
2018
, “
Switching Between Limit Cycles in a Model of Running Using Exponentially Stabilizing Discrete Control Lyapunov Function
,”
Proceedings of American Control Conference
, Milwaukee, WI, June 27–29, pp.
3714
3719
.10.23919/ACC.2018.8431123
7.
Yeatman
,
M.
,
Lv
,
G.
, and
Gregg
,
R. D.
,
2019
, “
Decentralized Passivity-Based Control With a Generalized Energy Storage Function for Robust Biped Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
10
), p.
101007
.10.1115/1.4043801
8.
Gao
,
Y.
,
Da
,
X.
, and
Gu
,
Y.
,
2020
, “
Impact-Aware Online Motion Planning for Fully-Actuated Bipedal Robot Walking
,”
Proceedings of American Control Conference
, Denver, CO, July 1–3, pp.
2100
2105
.10.23919/ACC45564.2020.9147498
9.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C.
,
2017
, “
Time-Dependent Orbital Stabilization of Underactuated Bipedal Walking
,”
Proceedings of American Control Conference
, Seattle, WA, May 24–26, pp.
4858
4863
.10.23919/ACC.2017.7963707
10.
Rijnen
,
M.
,
Biemond
,
J. B.
,
van de Wouw
,
N.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2020
, “
Hybrid Systems With State-Triggered Jumps: Sensitivity-Based Stability Analysis With Application to Trajectory Tracking
,”
IEEE Trans. Automat. Contr.
,
65
(
11
), pp.
4568
4583
.10.1109/TAC.2019.2961996
11.
Rijnen
,
M.
,
Chen
,
H. L.
,
van de Wouw
,
N.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2019
, “
Sensitivity Analysis for Trajectories of Nonsmooth Mechanical Systems With Simultaneous Impacts: A Hybrid Systems Perspective
,”
Proceedings of American Control Conference
, Philadelphia, PA, July 10–12, pp.
3623
3629
.10.23919/ACC.2019.8814388
12.
Wang
,
Y.
,
Dehio
,
N.
,
Tanguy
,
A.
, and
Kheddar
,
A.
,
2020
, “
Impact-Aware Task-Space Quadratic-Programming Control
,” arXiv preprint arXiv:2006.01987.
13.
Grizzle
,
J.
,
Abba
,
G.
, and
Plestan
,
P.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Automat. Contr.
,
46
(
1
), pp.
51
64
.10.1109/9.898695
14.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Automat. Contr.
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
15.
Morris
,
B.
, and
Grizzle
,
J. W.
,
2009
, “
Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots
,”
IEEE Trans. Automat. Contr.
,
54
(
8
), pp.
1751
1764
.10.1109/TAC.2009.2024563
16.
Martin
,
A. E.
, and
Gregg
,
R. D.
,
2015
, “
Hybrid Invariance and Stability of a Feedback Linearizing Controller for Powered Prostheses
,”
Proceedings of American Control Conference
, Chicago, IL, July 1–3, pp.
4670
4676
.10.1109/ACC.2015.7172065
17.
Gong
,
Y.
,
Hartley
,
R.
,
Da
,
X.
,
Hereid
,
A.
,
Harib
,
O.
,
Huang
,
J.-K.
, and
Grizzle
,
J.
,
2019
, “
Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway
,”
Proceedings of American Control Conference
, Philadelphia, PA, July 10–12, pp.
4559
4566
.10.23919/ACC.2019.8814833
18.
Fevre
,
M.
,
Goodwine
,
B.
, and
Schmiedeler
,
J. P.
,
2019
, “
Terrain-Blind Walking of Planar Underactuated Bipeds Via Velocity Decomposition-Enhanced Control
,”
Int. J. Robot. Res.
,
38
(
10–11
), pp.
1307
1323
.10.1177/0278364919870242
19.
Hamed
,
K. A.
, and
Grizzle
,
J. W.
,
2014
, “
Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry
,”
IEEE Trans. Robot.
,
30
(
2
), pp.
365
381
.10.1109/TRO.2013.2287831
20.
Da
,
X.
,
Harib
,
O.
,
Hartley
,
R.
,
Griffin
,
B.
, and
Grizzle
,
J. W.
,
2016
, “
From 2D Design of Underactuated Bipedal Gaits to 3D Implementation: Walking With Speed Tracking
,”
IEEE Access
,
4
, pp.
3469
3478
.10.1109/ACCESS.2016.2582731
21.
Ames
,
A. D.
,
Cousineau
,
E. A.
, and
Powell
,
M. J.
,
2012
, “
Dynamically Stable Bipedal Robotic Walking With NAO Via Human-Inspired Hybrid Zero Dynamics
,”
Proceedings of ACM International Conference on Hybrid Systems: Computation and Control
, Beijing China, Apr. 17–19, pp.
135
144
.https://dl.acm.org/doi/abs/10.1145/2185632.2185655
22.
Hamed
,
K.
,
Safaee
,
B.
, and
Gregg
,
R. D.
,
2019
, “
Dynamic Output Controllers for Exponential Stabilization of Periodic Orbits for Multidomain Hybrid Models of Robotic Locomotion
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
12
), p.
121011
.10.1115/1.4044618
23.
Xiong
,
X.
,
Reher
,
J.
, and
Ames
,
A. D.
,
2021
, “
Global Position Control on Underactuated Bipedal Robots: Step-to-Step Dynamics Approximation for Step Planning
,”
Proceeding of IEEE International Conference Robotics Automation
, Xi'an, China, May 30–June 5, pp.
2825
2831
.https://www.researchgate.net/publication/345788665_Global_Position_Control_on_Underactuated_Bipedal_Robots_Stepto-step_Dynamics_Approximation_for_Step_Planning
24.
Khalil
,
H. K.
,
1996
,
Nonlinear Control
,
Prentice Hall
, Hoboken, NJ.
25.
Gu
,
Y.
, and
Yuan
,
C.
,
2020
, “
Adaptive Robust Trajectory Tracking Control of Fully Actuated Bipedal Robotic Walking
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Boston, MA, July 6–9, pp.
1310
1315
.10.1109/AIM43001.2020.9158814
26.
Gu
,
Y.
, and
Yuan
,
C.
,
2021
, “
Adaptive Robust Tracking Control for Hybrid Models of Three-Dimensional Bipedal Robotic Walking Under Uncertainties
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
8
), p.
081007
.10.1115/1.4050259
27.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2016
, “
Bipedal Gait Recharacterization and Walking Encoding Generalization for Stable Dynamic Walking
,”
Proceedings of IEEE International Conference on Robotics Automation
, Stockholm, Sweden, May 16–21, pp.
1788
1793
.https://dl.acm.org/doi/abs/10.1109/ICRA.2016.7487324
28.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2018
, “
Exponential Stabilization of Fully Actuated Planar Bipedal Robotic Walking With Global Position Tracking Capabilities
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
5
), p.
051008
.10.1115/1.4038268
29.
Gao
,
Y.
, and
Gu
,
Y.
,
2019
, “
Global-Position Tracking Control of Multi-Domain Planar Bipedal Robotic Walking
,”
ASME
Paper No. DSCC2019-9117.10.1115/DSCC2019-9117
30.
Menini
,
L.
, and
Tornambè
,
A.
,
2001
, “
Asymptotic Tracking of Periodic Trajectories for a Simple Mechanical System Subject to Nonsmooth Impacts
,”
IEEE Trans. Automat. Control
,
46
(
7
), pp.
1122
1126
.10.1109/9.935068
31.
Biemond
,
J. J. B.
,
van de Wouw
,
N.
,
Heemels
,
W.
, and
Nijmeijer
,
H.
,
2013
, “
Tracking Control for Hybrid Systems With State-Triggered Jumps
,”
IEEE Trans. Automat. Control
,
58
(
4
), pp.
876
890
.10.1109/TAC.2012.2223351
32.
Forni
,
F.
,
Teel
,
A. R.
, and
Zaccarian
,
L.
,
2013
, “
Follow the Bouncing Ball: Global Results on Tracking and State Estimation With Impacts
,”
IEEE Trans. Automat. Control
,
58
(
6
), pp.
1470
1485
.10.1109/TAC.2013.2237952
33.
Naldi
,
R.
, and
Sanfelice
,
R. G.
,
2013
, “
Passivity-Based Control for Hybrid Systems With Applications to Mechanical Systems Exhibiting Impacts
,”
Automatica
,
49
(
5
), pp.
1104
1116
.10.1016/j.automatica.2013.01.018
34.
Rijnen
,
M.
,
van Rijn
,
A. T.
,
Dallali
,
H.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2016
, “
Hybrid Trajectory Tracking for a Hopping Robotic Leg
,”
IFAC-PapersOnLine
,
49
(
14
), pp.
107
112
.10.1016/j.ifacol.2016.07.993
35.
Rijnen
,
M.
,
de Mooij
,
E.
,
Traversaro
,
S.
,
Nori
,
F.
,
van de Wouw
,
N.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2017
, “
Control of Humanoid Robot Motions With Impacts: Numerical Experiments With Reference Spreading Control
,”
Proceedings of IEEE International Conference on Robotics Automation
, Marina Bay Sands, Singapore, May 29–June 3, pp.
4102
4107
.10.1109/ICRA.2017.7989472
36.
Branicky
,
M. S.
,
1998
, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid System
,”
IEEE Trans. Automat. Contr.
,
43
(
4
), pp.
475
482
.10.1109/9.664150
37.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2018
, “
Straight-Line Contouring Control of Fully Actuated 3-D Bipedal Robotic Walking
,”
Proceedings of American Control Conference
, Milwaukee, WI, June 27–29, pp.
2108
2113
.10.23919/ACC.2018.8431067
38.
Gao
,
Y.
, and
Gu
,
Y.
,
2019
, “
Global-Position Tracking Control of a Fully Actuated NAO Bipedal Walking Robot
,”
Proceedings of American Control Conference
, Philadelphia, PA, July 10–12, pp.
4596
4601
.10.23919/ACC.2019.8815144
39.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
, Vol.
28
,
CRC Press
, Boca Raton, FL.
40.
Olson
,
E.
,
2011
, “
AprilTag: A Robust and Flexible Visual Fiducial System
,”
Proceedings of IEEE International Conference on Robotics Automation
, Shanghai, China, May 9–13, pp.
3400
3407
.10.1109/ICRA.2011.5979561
41.
Nguyen
,
Q.
,
Da
,
X.
,
Grizzle
,
J. W.
, and
Sreenath
,
K.
,
2020
, “
Dynamic Walking On Stepping Stones With Gait Library and Control Barrier Functions
,”
Algorithmic Foundations of Robotics XII
, Springer, Berlin/Heidelberg, pp.
384
399
.
42.
Galloway
,
K.
,
Sreenath
,
K.
,
Ames
,
A. D.
, and
Grizzle
,
J. W.
,
2015
, “
Torque Saturation in Bipedal Robotic Walking Through Control Lyapunov Function-Based Quadratic Programs
,”
IEEE Access
,
3
, pp.
323
332
.10.1109/ACCESS.2015.2419630
43.
Liao
,
J.
,
Chen
,
Z.
, and
Yao
,
B.
,
2017
, “
High-Performance Adaptive Robust Control With Balanced Torque Allocation for the Over-Actuated Cutter-Head Driving System in Tunnel Boring Machine
,”
Mechatronics
,
46
, pp.
168
176
.10.1016/j.mechatronics.2017.08.007
44.
Yuan
,
M.
,
Chen
,
Z.
,
Yao
,
B.
, and
Liu
,
X.
,
2019
, “
Fast and Accurate Motion Tracking of a Linear Motor System Under Kinematic and Dynamic Constraints: An Integrated Planning and Control Approach
,”
IEEE Trans. Control Syst. Tech.
, 29(2), pp.
804
811
.10.1109/TCST.2019.2955658
You do not currently have access to this content.