Abstract

This paper solves the inverse dynamics of a tethered kite analytically. Specifically, the paper presents a procedure for determining the angle of attack, induced roll angle, and tether tension magnitude needed to achieve a desired combination of translational kite position, velocity, and acceleration. The focus of the paper is on energy harvesting kites. However, the underlying approach is applicable to other kite systems, such as kites for propulsion (e.g., SkySails, Hamburg, Germany). Solving inverse kite dynamics analytically is valuable for trajectory optimization, online state estimation, and the analysis of fundamental limitations on kite maneuvers. Previous work in the literature presents several models of kite dynamics, with varying degrees of fidelity and complexity. However, the nonlinearity of these models often makes them difficult to use for optimization, estimation, and control. The paper shows that, under reasonable assumptions, inverse kite dynamics can be solved in terms of the roots of a fourth-order polynomial function of angle of attack. This function has a geometric interpretation, providing insight into the multiplicity of resulting solutions. Moreover, for special cases including a kite with noncambered wings, these solutions can be computed analytically. A simulation validates the success of the proposed approach in computing inverse kite dynamics for a cross-current trajectory.

References

1.
Loyd
,
M. L.
,
1980
, “
Crosswind Kite Power
,”
J. Energy
,
4
(
3
), pp.
106
111
.10.2514/3.48021
2.
U.S. Department Of Energy
,
2015
, “
Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities
,” U.S. Department of Energy, Washington, DC.
3.
Archer
,
C. L.
, and
Caldeira
,
K.
,
2009
, “
Global Assessment of High-Altitude Wind Power
,”
Energies
,
2
(
2
), pp.
307
319
.10.3390/en20200307
4.
Li
,
H.
,
Olinger
,
D. J.
, and
Demetriou
,
M. A.
,
2015
, “
Control of an Airborne Wind Energy System Using an Aircraft Dynamics Model
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
2389
2394
.10.1109/ACC.2015.7171090
5.
Li
,
H.
,
Olinger
,
D. J.
, and
Demetriou
,
M. A.
,
2015
, “
Control of a Tethered Undersea Kite Energy System Using a Six Degree of Freedom Model
,” 54th IEEE Conference on Decision and Control (
CDC
), Osaka, Japan, Dec. 15–18, pp.
688
693
.10.1109/CDC.2015.7402309
6.
Li
,
H.
,
Olinger
,
D. J.
, and
Demetriou
,
M. A.
,
2019
, “
Modeling and Control of Tethered Undersea Kites
,”
Ocean Eng.
,
190
, p.
106390
.10.1016/j.oceaneng.2019.106390
7.
Vermillion
,
C.
,
Grunnagle
,
T.
,
Lim
,
R.
, and
Kolmanovsky
,
I.
,
2014
, “
Model-Based Plant Design and Hierarchical Control of a Prototype Lighter-Than-Air Wind Energy System, With Experimental Flight Test Results
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
531
542
.10.1109/TCST.2013.2263505
8.
Vermillion
,
C.
,
Glass
,
B.
, and
Greenwood
,
S.
,
2014
, “
Evaluation of a Water Channel-Based Platform for Characterizing Aerostat Flight Dynamics: A Case Study on a Lighter-Than-Air Wind Energy System
,”
AIAA
Paper No. 2014-2711.10.2514/6.2014-2711
9.
Denlinger
,
M.
,
2018
, “
Extremum Seeking Algorithms for Optimal Periodic Cotnrol With Application to Buoyant Air Turbines
,” Ph.D., thesis,
The Pennsylvania State University
, University Park, PA.
10.
Cobb
,
M.
,
Barton
,
K.
,
Fathy
,
H.
, and
Vermillion
,
C.
,
2019
, “
An Iterative Learning Approach for Online Flight Path Optimization for Tethered Energy Systems Undergoing Cyclic Spooling Motion
,”
Proceedings of the American Control Conference
, Philadelphia, PA, July 10–12, pp.
2164
2170
.10.23919/ACC.2019.8814773
11.
Cobb
,
M.
,
Reed
,
J.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Wu
,
M.
,
Fathy
,
H.
,
Barton
,
K.
, and
Vermillion
,
C.
,
2022
, “
Iterative Learning-Based Path Optimization With Application to Marine Hydrokinetic Energy Systems
,”
IEEE Trans. Control Syst. Technol.
,
30
(
2
), pp.
639
653
.10.1109/TCST.2021.3070526
12.
Canale
,
M.
,
Fagiano
,
L.
,
Ippolito
,
M.
, and
Milanese
,
M.
,
2006
, “
Control of Tethered Airfoils for a New Class of Wind Energy Generator
,”
Proceedings of the 45th IEEE Conference on Decision and Control
, San Diego, CA, Dec. 13–15, pp.
4020
4026
.10.1109/CDC.2006.376775
13.
Canale
,
M.
,
Fagiano
,
L.
, and
Milanese
,
M.
,
2007
, “
Power Kites for Wind Energy Generation: Fast Predictive Control of Tethered Airfoils
,”
IEEE Control Syst. Mag.
,
27
(
99
), pp.
25
38
.10.1109/MCS.2007.4339282
14.
Canale
,
M.
,
Fagiano
,
L.
, and
Milanese
,
M.
,
2010
, “
High Altitude Wind Energy Generation Using Controlled Power Kites
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
279
293
.10.1109/TCST.2009.2017933
15.
Houska
,
B.
, and
Diehl
,
M.
,
2007
, “
Optimal Control for Power Generating Kites
,”
Proceedings of European Control Conference
, Kos, Greece, pp.
3560
3567
.10.23919/ECC.2007.7068861
16.
Houska
,
B.
, and
Diehl
,
M.
,
2006
, “
Optimal Control of Towing Kites
,”
Proceedings of the 45th IEEE Conference on Decision and Control
, San Diego, CA, Dec. 13–15, pp.
2693
2697
.10.1109/CDC.2006.377210
17.
Wood
,
T. A.
,
Hesse
,
H.
,
Zgraggen
,
A. U.
, and
Smith
,
R. S.
,
2015
, “
Model-Based Identification and Control of the Velocity Vector Orientation for Autonomous Kites
,” American Control Conference (
ACC
),
IEEE
, Chicago, IL, July 1–3, pp.
2377
2382
.10.1109/ACC.2015.7171088
18.
Wood
,
T. A.
,
Hesse
,
H.
, and
Smith
,
R. S.
,
2017
, “
Predictive Control of Autonomous Kites in Tow Test Experiments
,”
IEEE Control Syst. Lett.
,
1
(
1
), pp.
110
115
.10.1109/LCSYS.2017.2708984
19.
Rapp
,
S.
,
Schmehl
,
R.
,
Oland
,
E.
, and
Haas
,
T.
,
2019
, “
Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems
,”
J. Guid., Control, Dyn.
,
42
(
11
), pp.
2456
2473
.10.2514/1.G004246
20.
Rapp
,
S.
,
Schmehl
,
R.
,
Oland
,
E.
,
Smidt
,
S.
,
Haas
,
T.
, and
Meyers
,
J.
,
2019
, “
A Modular Control Architecture for Airborne Wind Energy Systems
,”
AIAA
Paper No. 2019-1419.10.2514/6.2019-1419
21.
Reed
,
J.
,
Cobb
,
M.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Muglia
,
M.
, and
Vermillion
,
C.
,
2020
, “
Hierarchical Control Design and Performance Assessment of an Ocean Kite in a Turbulent Flow Environment
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
12726
12732
.10.1016/j.ifacol.2020.12.1887
22.
Reed
,
J.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Cobb
,
M.
, and
Vermillion
,
C.
,
2020
, “
Optimal Exploration and Charging for an Autonomous Underwater Vehicle With Energy-Harvesting Kite
,”
Proceedings of the American Control Conference
, Denver, CO, July 1–3, pp.
4134
4139
.10.23919/ACC45564.2020.9147746
23.
Minesto
, “
Power to Change the World
,” Minesto, Sweden, accessed Aug. 13, 2022, https://minesto.com/
24.
Windlift
, “
Airborne Power Generator
,” Windlift, Durham, NC, accessed Aug. 13, 2022, https://windlift.com/.
25.
Makani
, “Makani,” accessed Aug. 13, 2022, https://x.company/projects/makani/
26.
Bhattacharjee
,
D.
,
Tiburcio
,
M. A.
, and
Fathy
,
H.
,
2021
, “
Co-Optimization of the Spooling Motion and Cross-Current Trajectory of an Energy-Harvesting Marine Hydrokinetic Kite
,” 60th IEEE Conference on Decision and Control (
CDC
), Austin, TX, Dec. 13–17, pp.
2065
2070
.10.1109/CDC45484.2021.9683785
27.
Alvarez
,
M.
,
Bhattacharjee
,
D.
,
Fathy
,
H.
, and
Vermillion
,
C.
,
2021
, “
An Integrated Model of the Flight and Tether Dynamics of a Marine Hydrokinetic Energy Harvesting System
,” 2021 European Control Conference (
ECC
), Delft, The Netherlands, June 29–July 2.10.23919/ECC54610.2021.9655075
28.
Stevens
,
B.
, and
Lewis
,
F. L.
,
1992
,
Aircraft Control and Simulation
, Wiley, Hoboken, NJ.
29.
Torenbeek
,
E.
,
1982
,
Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, With Emphasis on Layout, Aerodynamic Design, Propulsion and Performance
,
Springer
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.