Abstract

The multivariable Hammerstein controlled autoregressive moving average (CARMA) system contains the sum of bilinear parameter vectors in the identification model, which is difficult to be transformed into a regression form for direct identification. A two-stage identification technique is developed in this article. By using multiple sets of special test signals, this chapter achieves separable identification for the linear subsystem and the nonlinear subsystem. Then, using the property of binary signal input to nonlinear part, parameters of noise model and the linear subsystem can be calculated by recursive extended least squares (RELS) method. To implement the off-line identification, the RELS is used to identify the nonlinear subsystem parameters. Finally, simulation examples illustrate the validity of proposed approach in identifying multivariable Hammerstein CARMA system.

References

1.
Giri
,
F.
, and
Bai
,
E. W.
,
2010
,
Block-Oriented Nonlinear System Identification
,
Springer
,
London
.
2.
Naeem
,
O.
, and
Huesman
,
A. E. M.
,
2011
, “
Non-Linear Model Approximation and Reduction by New Input-State Hammerstein Block Structure
,”
Comput. Chem. Eng.
,
35
(
5
), pp.
758
773
.10.1016/j.compchemeng.2011.01.037
3.
Smith
,
J. G.
,
Kamat
,
S.
, and
Madhavan
,
K. P.
,
2007
, “
Modeling of pH Process Using Wavenet Based Hammerstein Model
,”
J. Process Control
,
17
(
6
), pp.
551
561
.10.1016/j.jprocont.2006.11.001
4.
Biagiola
,
S. I.
, and
Figueroa
,
J. L.
,
2011
, “
Identification of Uncertain MIMO Wiener and Hammerstein Models
,”
Comput. Chem. Eng.
,
35
(
12
), pp.
2867
2875
.10.1016/j.compchemeng.2011.05.013
5.
Zhang
,
H. T.
,
Li
,
H. X.
, and
Chen
,
G.
,
2008
, “
Dual-Mode Predictive Control Algorithm for Constrained Hammerstein Systems
,”
Int. J. Control
,
81
(
10
), pp.
1609
1625
.10.1080/00207170701885453
6.
Le
,
F.
,
Markovsky
,
I.
,
Freeman
,
C. T.
, and
Rogers
,
E.
,
2012
, “
Recursive Identification of Hammerstein Systems With Application to Electrically Stimulated Muscle
,”
Control Eng. Pract.
,
20
(
4
), pp.
386
396
.10.1016/j.conengprac.2011.08.001
7.
Li
,
C. H.
,
Zhu
,
X. J.
,
Cao
,
G. Y.
,
Sui
,
S.
, and
Hu
,
M. R.
,
2008
, “
Identification of the Hammerstein Model of a PEMFC Stack Based on Least Squares Support Vector Machines
,”
J. Power Sources
,
175
(
1
), pp.
303
316
.10.1016/j.jpowsour.2007.09.049
8.
Yoon
,
Y.
, and
Sun
,
Z.
,
2017
, “
Spectral Analysis of Electrohydraulic System
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
2
), p.
021005
.10.1115/1.4034780
9.
Ding
,
F.
, and
Chen
,
T.
,
2005
, “
Identification of Hammerstein Nonlinear ARMAX Systems
,”
Automatica
,
41
(
9
), pp.
1479
1489
.10.1016/j.automatica.2005.03.026
10.
Li
,
J.
,
Ding
,
F.
, and
Yang
,
G.
,
2012
, “
Maximum Likelihood Least Squares Identification Method for Input Nonlinear Finite Impulse Response Moving Average Systems
,”
Math. Comput. Modell.
,
55
(
3–4
), pp.
442
450
.10.1016/j.mcm.2011.08.023
11.
Gómez
,
J. C.
, and
Baeyens
,
E.
,
2005
, “
Subspace-Based Identification Algorithms for Hammerstein and Wiener Models
,”
Eur. J. Control
,
11
(
2
), pp.
127
136
.10.3166/ejc.11.127-136
12.
Jalaleddini
,
K.
, and
Kearney
,
R. E.
,
2013
, “
Subspace Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identification
,”
IEEE Trans. Biomed. Eng.
,
60
(
10
), pp.
2725
2734
.10.1109/TBME.2013.2264216
13.
Goethals
,
I.
,
Pelckmans
,
K.
,
Suykens
,
J. A.
, and
De Moor
,
B.
,
2005
, “
Subspace Identification of Hammerstein Systems Using Least Squares Support Vector Machines
,”
IEEE Trans. Autom. Control
,
50
(
10
), pp.
1509
1519
.10.1109/TAC.2005.856647
14.
Sung
,
S. W.
,
2002
, “
System Identification Method for Hammerstein Processes
,”
Ind. Eng. Chem. Res.
,
41
(
17
), pp.
4295
4302
.10.1021/ie0109206
15.
Jing
,
X.
,
2011
, “
Frequency Domain Analysis and Identification of Block-Oriented Nonlinear Systems
,”
J. Sound Vib.
,
330
(
22
), pp.
5427
5442
.10.1016/j.jsv.2011.06.015
16.
Bai
,
E. W.
,
2003
, “
Frequency Domain Identification of Hammerstein Models
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
530
542
.10.1109/TAC.2003.809803
17.
Voros
,
J.
,
1999
, “
Iterative Algorithm for Parameter Identification of Hammerstein Systems With Two-Segment Nonlinearities
,”
IEEE Trans. Autom. Control
,
44
(
11
), pp.
2145
2149
.10.1109/9.802933
18.
Bai
,
E. W.
, and
Li
,
K.
,
2010
, “
Convergence of the Iterative Algorithm for a General Hammerstein System Identification
,”
Automatica
,
46
(
11
), pp.
1891
1896
.10.1016/j.automatica.2010.07.007
19.
Jia
,
L.
,
Li
,
X.
, and
Chiu
,
M. S.
,
2016
, “
The Identification of Neuro-Fuzzy Based MIMO Hammerstein Model With Separable Input Signals
,”
Neurocomputing
,
174
, pp.
530
541
.10.1016/j.neucom.2015.06.089
20.
Jafari
,
M.
,
Salimifard
,
M.
, and
Dehghani
,
M.
,
2014
, “
Identification of Multivariable Nonlinear Systems in the Presence of Colored Noises Using Iterative Hierarchical Least Squares Algorithm
,”
ISA Trans.
,
53
(
4
), pp.
1243
1252
.10.1016/j.isatra.2013.12.034
21.
Wang
,
D.
, and
Zhang
,
W.
,
2015
, “
Improved Least Squares Identification Algorithm for Multivariable Hammerstein Systems
,”
J. Franklin Inst.
,
352
(
11
), pp.
5292
5307
.10.1016/j.jfranklin.2015.09.007
22.
Wang
,
D.
, and
Ding
,
F.
,
2016
, “
Parameter Estimation Algorithms for Multivariable Hammerstein CARMA Systems
,”
Inf. Sci.
,
355–356
, pp.
237
248
.10.1016/j.ins.2016.03.037
23.
Harnischmacher
,
G.
, and
Marquardt
,
W.
,
2007
, “
A Multi-Variate Hammerstein Model for Processes With Input Directionality
,”
J. Process Control
,
17
(
6
), pp.
539
550
.10.1016/j.jprocont.2006.12.001
24.
Hlaing
,
Y. M.
,
Chiu
,
M. S.
, and
Lakshminarayanan
,
S.
,
2007
, “
Modelling and Control of Multivariable Processes Using Generalized Hammerstein Model
,”
Chem. Eng. Res. Des.
,
85
(
4
), pp.
445
454
.10.1205/cherd06210
25.
Rayouf
,
Z.
,
Ghorbel
,
C.
, and
Braiek
,
N. B.
,
2016
, “
An Extended Identification Methods for Multivariable Hammerstein System
,” Seventh International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (
SETIT
), Hammamet, Tunisia, Dec. 18-20, pp.
496
502
.10.1109/SET IT.2016.7939921
26.
Li
,
L.
,
Ren
,
X.
,
Lv
,
Y.
, and
Wang
,
M.
,
2018
, “
Parameter Estimation for Multivariable Hammerstein Systems Based on the Decomposition Technique
,” 37th Chinese Control Conference (
CCC
), Wuhan, China, July 25-27, pp.
1661
1666
.10.23919/ChiCC.2018.8483627
27.
Rahmani
,
M. R.
, and
Farrokhi
,
M.
,
2019
, “
Robust Identification of MISO Neuro-Fractional-Order Hammerstein Systems
,”
Int. J. Robust Nonlinear Control
,
29
(
7
), pp.
2137
2148
.10.1002/rnc.4487
28.
Ji
,
Y.
,
Jiang
,
X.
, and
Wan
,
L.
,
2020
, “
Hierarchical Least Squares Parameter Estimation Algorithm for Two-Input Hammerstein Finite Impulse Response Systems
,”
J. Franklin Inst.
,
357
(
8
), pp.
5019
5032
.10.1016/j.jfranklin.2020.03.027
29.
Wang
,
D.
,
Fan
,
Q.
, and
Ma
,
Y.
,
2020
, “
An Interactive Maximum Likelihood Estimation Method for Multivariable Hammerstein Systems
,”
J. Franklin Inst.
,
357
(
17
), pp.
12986
13005
.10.1016/j.jfranklin.2020.09.005
30.
Wang
,
D.
, and
Ding
,
F.
,
2012
, “
Hierarchical Least Squares Estimation Algorithm for Hammerstein-Wiener Systems
,”
IEEE Signal Process. Lett.
,
19
(
12
), pp.
825
828
.10.1109/LSP.2012.2221704
31.
Jia
,
L.
,
Chiu
,
M. S.
, and
Ge
,
S. S.
,
2005
, “
A Noniterative Neuro-Fuzzy Based Identification Method for Hammerstein Processes
,”
J. Process Control
,
15
(
7
), pp.
749
761
.10.1016/j.jprocont.2005.03.006
32.
Cui
,
M.
,
Liu
,
H.
,
Li
,
Z.
,
Tang
,
Y.
, and
Guan
,
X.
,
2014
, “
Identification of Hammerstein Model Using Functional Link Artificial Neural Network
,”
Neurocomputing
,
142
, pp.
419
428
.10.1016/j.neucom.2014.03.051
33.
Han
,
Z.
,
Cheng
,
B.
,
Wang
,
Y.
, and
Shao
,
Y.
,
2018
, “
Multi-Signal Source Identification of ELM Hammerstein Model With Colored Noise
,” IEEE Third International Conference on Cloud Computing and Big Data Analysis (
ICCCBDA
), Chengdu, China, Apr. 20-22, pp.
457
461
.10.1109/ICCCBDA.2018.8386559
34.
Park
,
H. C.
,
Sung
,
S. W.
, and
Lee
,
J.
,
2006
, “
Modeling of Hammerstein-Wiener Processes With Special Input Test Signals
,”
Ind. Eng. Chem. Res.
,
45
(
3
), pp.
1029
1038
.10.1021/ie050540a
35.
Ljung
,
L.
,
1978
, “
Convergence Analysis of Parametric Identification Methods
,”
IEEE Trans. Autom. Control
,
23
(
5
), pp.
770
783
.10.1109/TAC.1978.1101840
36.
Chen
,
J.
, and
Yea
,
Y.
,
2003
, “
Design Pole Placement Controller Using Linearized Neural Networks for MISO Systems
,”
J. Chem. Eng. Jpn.
,
36
(
8
), pp.
1005
1011
.10.1252/jcej.36.1005
37.
Wang
,
D.
,
Chu
,
Y.
, and
Ding
,
F.
,
2010
, “
Auxiliary Model-Based RELS and MI-ELS Algorithm for Hammerstein OEMA Systems
,”
Comput. Math. Appl.
,
59
(
9
), pp.
3092
3098
.10.1016/j.camwa.2010.02.030
You do not currently have access to this content.