Abstract

An impedance-based control scheme is introduced for cooperative manipulators grasping a rigid object. The position and orientation of the payload are to be maintained close to the desired trajectory, trading off tracking accuracy by low energy consumption and maintaining stability. To this end, the augmented dynamics of the robots, their actuators, and the payload are formed, and an impedance control is adopted. A virtual control strategy is used to decouple torque control from actuator control. An optimization problem is then formulated using energy balance equations. The optimization finds the damping and stiffness gains of the impedance relation such that the energy consumption is minimized. Furthermore, L2 stability techniques are used to guarantee the stability of the controller. A numerical example is provided to demonstrate the results.

References

1.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2018
, “
Control With Optimal Energy Regeneration in Robot Manipulators Driven by Brushless dc Motors
,”
ASME
Paper No. DSCC2018-8972.10.1115/DSCC2018-8972
2.
Shimizu
,
T.
, and
Underwood
,
C.
,
2013
, “
Super-Capacitor Energy Storage for Micro-Satellites: Feasibility and Potential Mission Applications
,”
Acta Astronaut.
,
85
, pp.
138
154
.10.1016/j.actaastro.2012.12.005
3.
Richter
,
H.
,
2020
, “
Control for Optimal Energy Regeneration From Autorotation in UAVs
,” American Control Conference (
ACC
),
IEEE
, Online, July 1–3, pp.
5108
5113
.10.23919/ACC45564.2020.9147941
4.
Khalaf
,
P.
, and
Richter
,
H.
,
2016
, “
Parametric Optimization of Stored Energy in Robots With Regenerative Drive Systems
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(AIM)
, IEEE, Banff, AB, Canada, July 12–15, pp.
1424
1429
.10.1109/AIM.2016.7576970
5.
Khalaf
,
P.
, and
Richter
,
H.
,
2020
, “
Trajectory Optimization of Robots With Regenerative Drive Systems: Numerical and Experimental Results
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
501
516
.10.1109/TRO.2019.2923920
6.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
9
), p.
091004
.10.1115/1.4030391
7.
Khalaf
,
P.
,
Warner
,
H.
,
Hardin
,
E.
,
Richter
,
H.
, and
Simon
,
D.
,
2018
, “
Development and Experimental Validation of an Energy Regenerative Prosthetic Knee Controller and Prototype
,”
ASME
Paper No. DSCC2018-9091.10.1115/DSCC2018-9091
8.
He
,
X.
,
Liu
,
H.
,
He
,
S.
,
Hu
,
B.
, and
Xiao
,
G.
,
2019
, “
Research on the Energy Efficiency of Energy Regeneration Systems for a Battery-Powered Hydrostatic Vehicle
,”
Energy
,
178
, pp.
400
418
.10.1016/j.energy.2019.04.092
9.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2022
, “
A Novel Concept for Energy-Optimal, Independent-Phase Control of Brushless Motor Drivers
,”
ASME Lett. Dyn. Syst. Control
,
2
(
2
), p.
021004
.10.1115/1.4052662
10.
Richter
,
H.
, and
Selvaraj
,
D.
,
2015
, “
Impedance Control With Energy Regeneration in Advanced Exercise Machines
,” American Control Conference (
ACC
),
IEEE
, Chicago, IL, July 1–3, pp.
5890
5895
.10.1109/ACC.2015.7172263
11.
Warner
,
H.
,
Simon
,
D.
, and
Richter
,
H.
,
2016
, “
Design Optimization and Control of a Crank-Slider Actuator for a Lower-Limb Prosthesis With Energy Regeneration
,”
IEEE International Conference on Advanced Intelligent Mechatronics
, (
AIM
) IEEE, Banff, AB, Canada, July 12–15, pp.
1430
1435
.10.1109/AIM.2016.7576971
12.
Carabin
,
G.
,
Wehrle
,
E.
, and
Vidoni
,
R.
,
2017
, “
A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
,”
Robotics
,
6
(
4
), p.
39
.10.3390/robotics6040039
13.
Richter
,
H.
,
Connolly
,
J. W.
, and
Simon
,
D. L.
,
2020
, “
Optimal Control and Energy Management for Hybrid Gas-Electric Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091009
.10.1115/1.4047890
14.
Joy
,
J.
, and
Ushakumari
,
S.
,
2018
, “
Regenerative Braking Mode Operation of a Three-Phase h-Bridge Inverter Fed Pmbldc Motor Generator Drive in an Electric Bike
,”
Elect. Power Compon. Syst.
,
46
(
19–20
), pp.
2174
2188
.10.1080/15325008.2018.1535529
15.
Ivoilov
,
A.
,
Trubin
,
V.
,
Zhmud
,
V.
, and
Dimitrov
,
L.
,
2018
, “
The Power Consumption Decreasing of the Two-Wheeled Balancing Robot
,”
International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)
,
IEEE
, Vladivostok, Russian Federation, Oct. 3–4, pp.
1
8
.
16.
Chiacchio
,
P.
,
Chiaverini
,
S.
, and
Siciliano
,
B.
,
1992
, “
Cooperative Control Schemes for Multiple Robot Manipulator Systems
,”
Proceedings IEEE International Conference on Robotics and Automation
,
IEEE
, Nice, France, May 12–14, pp.
2218
2223
.10.1109/ROBOT.1992.219928
17.
Jean
,
J.-H.
, and
Fu
,
L.-C.
,
1993
, “
An Adaptive Control Scheme for Coordinated Multimanipulator Systems
,”
IEEE Trans. Rob. Autom.
,
9
(
2
), pp.
226
231
.10.1109/70.238287
18.
Erhart
,
S.
, and
Hirche
,
S.
,
2015
, “
Internal Force Analysis and Load Distribution for Cooperative Multi-Robot Manipulation
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1238
1243
.10.1109/TRO.2015.2459412
19.
Vergnano
,
A.
,
Thorstensson
,
C.
,
Lennartson
,
B.
,
Falkman
,
P.
,
Pellicciari
,
M.
,
Leali
,
F.
, and
Biller
,
S.
,
2012
, “
Modeling and Optimization of Energy Consumption in Cooperative Multi-Robot Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
2
), pp.
423
428
.10.1109/TASE.2011.2182509
20.
Bonitz
,
R.
, and
Hsia
,
T. C.
,
1996
, “
Internal Force-Based Impedance Control for Cooperating Manipulators
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
78
89
.10.1109/70.481752
21.
Caccavale
,
F.
,
Chiacchio
,
P.
,
Marino
,
A.
, and
Villani
,
L.
,
2008
, “
Six-Dof Impedance Control of Dual-Arm Cooperative Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
13
(
5
), pp.
576
586
.10.1109/TMECH.2008.2002816
22.
Szewczyk
,
J.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2002
, “
Planning and Controlling Cooperating Robots Through Distributed Impedance
,”
J. Rob. Syst.
,
19
(
6
), pp.
283
297
.10.1002/rob.10041
23.
Shimizu
,
M.
,
2012
, “
Nonlinear Impedance Control to Maintain Robot Position Within Specified Ranges
,” Proceedings of SICE Annual Conference (
SICE
),
IEEE
, Akita, Japan, Aug. 20–23, pp.
1287
1292
.https://ieeexplore.ieee.org/document/6318645
24.
Heck
,
D.
,
Kostić
,
D.
,
Denasi
,
A.
, and
Nijmeijer
,
H.
,
2013
, “
Internal and External Force-Based Impedance Control for Cooperative Manipulation
,” European Control Conference (
ECC
),
IEEE
, Zurich, Switzerland, July 17–19, pp.
2299
2304
.10.23919/ECC.2013.6669163
25.
Schneider
,
S.
, and
Cannon
,
R. H.
,
1989
, “
Object Impedance Control for Cooperative Manipulation: Theory and Experimental Results
,”
IEEE International Conference on Robotics and Automation
,
IEEE Computer Society
, Scottsdale, AZ/USA, May 14–19, pp.
1076
1077
.
26.
Li
,
M.
,
Li
,
K.
,
Wang
,
P.
,
Liu
,
Y.
,
Zha
,
F.
, and
Guo
,
W.
,
2017
, “
Indirect Adaptive Impedance Control for Dual-Arm Cooperative Manipulation
,” Second International Conference on Advanced Robotics and Mechatronics (
ICARM
),
IEEE
, Heifei, China, Aug. 27–31, pp.
650
655
.10.1109/ICARM.2017.8273239
27.
Ren
,
Y.
,
Zhou
,
Y.
,
Liu
,
Y.
,
Jin
,
M.
, and
Liu
,
H.
,
2014
, “
Adaptive Object Impedance Control of Dual-Arm Cooperative Humanoid Manipulators
,”
Proceeding of the 11th World Congress on Intelligent Control and Automation
,
IEEE
, Shenyang, China, June 27–30, pp.
3333
3339
.10.1109/WCICA.2014.7053267
28.
Caccavale
,
F.
, and
Villani
,
L.
,
2001
, “
An Impedance Control Strategy for Cooperative Manipulation
,”
Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Vol.
1
,
IEEE
, Como, Italy, July 8–12, pp.
343
348
.10.1109/AIM.2001.936478
29.
He
,
J.
,
Luo
,
M.
, and
Zhang
,
Q.
,
2016
, “
Dual Impedance Control With Variable Object Stiffness for the Dual-Arm Cooperative Manipulators
,” Asia-Pacific Conference on Intelligent Robot Systems (
ACIRS
),
IEEE
, Tokyo, Japan, July 20–22, pp.
102
108
.10.1109/ACIRS.2016.7556196
30.
Liu
,
J.-F.
, and
Abdel-Malek
,
K.
,
2000
, “
Robust Control of Planar Dual-Arm Cooperative Manipulators
,”
Rob. Comput. Integr. Manuf.
,
16
(
2–3
), pp.
109
119
.10.1016/S0736-5845(99)00043-5
31.
Moon
,
S. B.
, and
Ahmad
,
S.
,
1991
, “
Time Scaling of Cooperative Multirobot Trajectories
,”
IEEE Trans. Syst., Man, Cybernetics
,
21
(
4
), pp.
900
908
.10.1109/21.108307
32.
Kumar
,
V.
, and
Gardner
,
J.
,
1990
, “
Kinematics of Redundantly Actuated Closed Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
269
274
.10.1109/70.54745
33.
Yun
,
X.
, and
Kumar
,
V.
,
1991
, “
An Approach to Simultaneous Control of Trajectory and Interaction Forces in Dual-Arm Configurations
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
618
625
.10.1109/70.97873
34.
Van der Schaft
,
A. J.
, and
Van Der Schaft
,
A.
,
2000
,
L2-Gain and Passivity Techniques in Nonlinear Control
, Vol.
2
,
Springer
, London, UK.
35.
Vidyasagar
,
M.
,
2002
,
Nonlinear Systems Analysis
,
Siam
, Philadelphia, PA.
36.
Marquez
,
H.
, and
Diduch
,
C.
,
1994
, “
Stability Conditions for Systems With Parametric Uncertainties and Nonlinear Feedback
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
,
41
(
5
), pp.
423
426
.10.1109/81.296328
37.
Ortega
,
R.
,
Perez
,
J. A. L.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H. J.
,
2013
,
Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications
,
Springer Science & Business Media
, London, UK.
38.
Brogliato
,
B.
,
Lozano
,
R.
,
Maschke
,
B.
, and
Egeland
,
O.
,
2007
, “
Dissipative Systems Analysis and Control
,”
Theory Appl.
,
2
, 2–5.
39.
Kelly
,
R.
,
Carelli
,
R.
, and
Ortega
,
R.
,
1989
, “
Adaptive Motion Control Design of Robot Manipulators: An Input-Output Approach
,”
Int. J. Control
,
50
(
6
), pp.
2563
2581
.10.1080/00207178908953515
40.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
, Vol.
3
,
Wiley
,
New York
.
41.
Lewis
,
F. L.
,
Dawson
,
D. M.
, and
Abdallah
,
C. T.
,
2003
,
Robot Manipulator Control: Theory and Practice
,
CRC Press
, New York.
42.
Kawasaki
,
H.
,
Ueki
,
S.
, and
Ito
,
S.
,
2006
, “
Decentralized Adaptive Coordinated Control of Multiple Robot Arms Without Using a Force Sensor
,”
Automatica
,
42
(
3
), pp.
481
488
.10.1016/j.automatica.2005.11.009
43.
Koivo
,
A.
, and
Unseren
,
M.
,
1990
, “
Modeling Closed Chain Motion of Two Manipulators Holding a Rigid Object
,”
Mech. Mach. Theory
,
25
(
4
), pp.
427
438
.10.1016/0094-114X(90)90079-Y
44.
Vukobratović
,
M.
,
1997
, “
How to Control Robots Interacting With Dynamic Environment
,”
J. Intell. Rob. Syst.
,
19
(
2
), pp.
119
152
.10.1023/A:1007974811131
45.
Shamshirgaran
,
A.
,
Javidi
,
H.
, and
Simon
,
D.
,
2021
, “
Evolutionary Algorithms for Multi-Objective Optimization of Drone Controller Parameters
,” IEEE Conference on Control Technology and Applications (
CCTA
),
IEEE
, Online, San Diego, CA, Aug. 9–11, pp.
1049
1055
.10.1109/CCTA48906.2021.9658828
46.
Khalili
,
N.
, and
Ghorbanpour
,
A.
,
2020
, “
Optimal Tuning of Single-Axis Satellite Attitude Control Parameters Using Genetic Algorithm
,”
ASME
Paper No. DSCC2020-3212.10.1115/DSCC2020-3212
47.
Ferraguti
,
F.
,
Secchi
,
C.
, and
Fantuzzi
,
C.
,
2013
, “
A Tank-Based Approach to Impedance Control With Variable Stiffness
,”
IEEE International Conference on Robotics and Automation
,
IEEE
, Karlsruhe, Germany, May 6–10, pp.
4948
4953
.10.1109/ICRA.2013.6631284
48.
Zheng
,
M.
,
Yuan
,
T.
, and
Huang
,
T.
,
2018
, “
Time-Varying Impedance Control of Port Hamiltonian System With a New Energy-Storing Tank
,”
Complexity
,
2018
, pp.
1
10
.10.1155/2018/8134230
49.
Kishi
,
Y.
,
Luo
,
Z. W.
,
Asano
,
F.
, and
Hosoe
,
S.
,
2003
, “
Passive Impedance Control With Time-Varying Impedance Center
,” Proceedings IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (
Cat. No. 03EX694
), Vol.
3
,
IEEE
, Kobe, Japan, July 16–20, pp.
1207
1212
.10.1109/CIRA.2003.1222169
50.
Kronander
,
K.
, and
Billard
,
A.
,
2016
, “
Stability Considerations for Variable Impedance Control
,”
IEEE Trans. Rob.
,
32
(
5
), pp.
1298
1305
.10.1109/TRO.2016.2593492
51.
Forbes
,
J. R.
, and
Damaren
,
C. J.
,
2010
, “
Passive Linear Time-Varying Systems: State-Space Realizations, Stability in Feedback, and Controller Synthesis
,”
Proceedings of the American Control Conference
,
IEEE
, Baltimore, MD, June 30–July 2, pp.
1097
1104
.10.1109/ACC.2010.5530792
You do not currently have access to this content.