Abstract

Current Lagrangian models for soft cylindrical robots (SCRs) have been developed under rigid body considerations, and therefore, body deformation properties have not been fully incorporated into these models. Thus, key deformation properties such as density variation, variable CoM, and time-varying inertia tensor are missing. In addition, the highly nonlinear dynamical couplings arising from deformation are also missing in deformable body-based formulations. In this paper, Lagrangian and quasi-Lagrangian models of a noninertial soft robot are developed under the essential modeling assumption that distance among particles varies. Such nonrigid body assumption introduces deformation properties that lead to a clear description of free-motion deformation dynamics subject to reaction forces. Altogether, our proposal gives rise to sound qualitative mathematical models that incorporate deformation phenomena, with well-posed structural properties. To exemplify quantitatively the usefulness of the proposed models, two simulation scenarios are presented and discussed. In the first one, the soft robot is fixed to the ground, while the second scenario, a soft robot is attached to a three-dimensional free-flying rigid frame.

References

1.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.10.1155/2008/520417
2.
Shabana
,
A. A.
,
2018
, “
Continuum-Based Geometry/Analysis Approach for Flexible and Soft Robotic Systems
,”
Soft Rob.
,
5
(
5
), pp.
613
621
.10.1089/soro.2018.0007
3.
Sadati
,
S. H.
,
Naghibi
,
S. E.
,
Shiva
,
A.
,
Michael
,
B.
,
Renson
,
L.
,
Howard
,
M.
,
Rucker
,
C. D.
,
Althoefer
,
K.
,
Nanayakkara
,
T.
,
Zschaler
,
S.
,
Bergeles
,
C.
,
Hauser
,
H.
, and
Walker
,
I. D.
,
2021
, “
TMTDyn: A Matlab Package for Modeling and Control of Hybrid Rigid–Continuum Robots Based on Discretized Lumped Systems and Reduced-Order Models
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
296
347
.10.1177/0278364919881685
4.
Shiva
,
A.
,
Sadati
,
S. H.
,
Noh
,
Y.
,
Fraś
,
J.
,
Ataka
,
A.
,
Würdemann
,
H.
,
Hauser
,
H.
,
Walker
,
I. D.
,
Nanayakkara
,
T.
, and
Althoefer
,
K.
,
2019
, “
Elasticity Versus Hyperelasticity Considerations in Quasistatic Modeling of a Soft Finger-Like Robotic Appendage for Real-Time Position and Force Estimation
,”
Soft Rob.
,
6
(
2
), pp.
228
249
.10.1089/soro.2018.0060
5.
Shapiro
,
Y.
,
Wolf
,
A.
, and
Gabor
,
K.
,
2011
, “
Bi-Bellows: Pneumatic Bending Actuator
,”
Sens. Actuators, A
,
167
(
2
), pp.
484
494
.10.1016/j.sna.2011.03.008
6.
Grazioso
,
S.
,
Di Gironimo
,
G.
, and
Siciliano
,
B.
,
2019
, “
A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation
,”
Soft Rob.
,
6
(
6
), pp.
790
811
.10.1089/soro.2018.0047
7.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.10.1109/TRO.2008.924923
8.
Sadati
,
S.
,
Naghibi
,
S. E.
,
Shiva
,
A.
,
Noh
,
Y.
,
Gupta
,
A.
,
Walker
,
I. D.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2017
, “
A Geometry Deformation Model for Braided Continuum Manipulators
,”
Front. Rob. AI
,
4
, p.
22
.10.3389/frobt.2017.00022
9.
Trumić
,
M.
,
Santina
,
C. D.
,
Jovanović
,
K.
, and
Fagiolini
,
A.
,
2021
, “
Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching
,”
IEEE Control Syst. Lett.
,
5
(
6
), pp.
1934
1939
.10.1109/LCSYS.2020.3047737
10.
Tadikonda
,
S. S. K.
, and
Baruh
,
H.
,
1992
, “
Dynamics and Control of a Translating Flexible Beam With a Prismatic Joint
,”
ASME J. Dyn. Syst., Meas., Control
,
114
(
3
), pp.
422
427
.10.1115/1.2897364
11.
Giri
,
N.
, and
Walker
,
I. D.
,
2011
, “
Three Module Lumped Element Model of a Continuum Arm Section
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), San Francisco, CA, Sept. 25–30, pp.
4060
4065
.10.1109/IROS.2011.6094909
12.
Jung
,
J.
,
Penning
,
R. S.
,
Ferrier
,
N. J.
, and
Zinn
,
M. R.
,
2011
, “
A Modeling Approach for Continuum Robotic Manipulators: Effects of Nonlinear Internal Device Friction
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
5139
5146
.10.1109/IROS.2011.6094941
13.
Falkenhahn
,
V.
,
Mahl
,
T.
,
Hildebrandt
,
A.
,
Neumann
,
R.
, and
Sawodny
,
O.
,
2015
, “
Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler–Lagrange Formalism
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1483
1496
.10.1109/TRO.2015.2496826
14.
Marchese
,
A. D.
,
Tedrake
,
R.
, and
Rus
,
D.
,
2016
, “
Dynamics and Trajectory Optimization for a Soft Spatial Fluidic Elastomer Manipulator
,”
Int. J. Rob. Res.
,
35
(
8
), pp.
1000
1019
.10.1177/0278364915587926
15.
Della Santina
,
C.
,
Katzschmann
,
R. K.
,
Biechi
,
A.
, and
Rus
,
D.
,
2018
, “
Dynamic Control of Soft Robots Interacting With the Environment
,”
IEEE International Conference on Soft Robotics
, Livorno, Italy, Apr. 24–28, pp.
46
53
.10.1109/ROBOSOFT.2018.8404895
16.
Katzschmann
,
R. K.
,
Della Santina
,
C.
,
Toshimitsu
,
Y.
,
Bicchi
,
A.
, and
Rus
,
D.
,
2019
, “
Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched With an Augmented Rigid Body Model
,”
Second IEEE International Conference on Soft Robotics
, Seoul, Korea, Apr. 14–18, pp.
454
461
.10.1109/ROBOSOFT.2019.8722799
17.
Mochiyama
,
H.
, and
Suzuki
,
T.
,
2002
, “
Dynamical Modelling of a Hyper-Flexible Manipulator
,”
Proceedings of the 41st SICE Annual Conference
, Osaka, Japan, Aug. 05–07, pp.
1505
1510
.10.1109/SICE.2002.1196530
18.
Godage
,
I. S.
,
Medrano-Cerda
,
G. A.
,
Branson
,
D. T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2016
, “
Dynamics for Variable Length Multisection Continuum Arms
,”
Int. J. Rob. Res.
,
35
(
6
), pp.
695
722
.10.1177/0278364915596450
19.
Mustaza
,
S. M.
,
Elsayed
,
Y.
,
Lekakou
,
C.
,
Saaj
,
C.
, and
Fras
,
J.
,
2019
, “
Dynamic Modeling of Fiber-Reinforced Soft Manipulator: A Visco-Hyperelastic Material-Based Continuum Mechanics Approach
,”
Soft Rob.
,
6
(
3
), pp.
305
317
.10.1089/soro.2018.0032
20.
Frazelle
,
C. G.
,
Kapadia
,
A. D.
, and
Walker
,
I. D.
,
2018
, “
A Nonlinear Control Strategy for Extensible Continuum Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Brisbane, Australia, May 21–25, pp.
7727
7734
.10.1109/ICRA.2018.8463187
21.
Shabana
,
A.
, and
Hwang
,
Y.
,
1993
, “
Dynamic Coupling Between the Joint and Elastic Coordinates in Flexible Mechanism Systems
,”
Int. J. Rob. Res.
,
12
(
3
), pp.
299
306
.10.1177/027836499301200308
22.
Godage
,
I. S.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Medrano-Cerda
,
G. A.
, and
Caldwell
,
D. G.
,
2011
, “
Shape Function-Based Kinematics and Dynamics for Variable Length Continuum Robotic Arms
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Shanghai, China, May 09–13, pp.
452
457
.10.1109/ICRA.2011.5979607
23.
Shabana
,
A. A.
,
2005
,
Floating Frame of Reference Formulation
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
188
266
.
24.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
25.
Deng
,
F.
,
He
,
X.
,
Li
,
L.
, and
Zhang
,
J.
,
2007
, “
Dynamics Modeling for a Rigid-Flexible Coupling System With Nonlinear Deformation Field
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
559
578
.10.1007/s11044-007-9052-8
26.
Arteaga
,
M. A.
,
1998
, “
On the Properties of a Dynamic Model of Flexible Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
8
14
.10.1115/1.2801326
27.
Lammerts
,
I. M. M.
,
Veldpaus
,
F. E.
,
Van de Molengraft
,
M. J. G.
, and
Kok
,
J. J.
,
1995
, “
Adaptive Computed Reference Computed Torque Control of Flexible Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
1
), pp.
31
36
.10.1115/1.2798520
28.
Trejo-Ramos
,
C.-A.
,
Olguín-Díaz
,
E.
,
Parra-Vega
,
V.
, and
Vázquez-García
,
C.-E.
,
2021
, “
A Lagrangian Dynamic Model for Soft Cylindrical Robots Without Internal Holonomic Constraint
,” IEEE 2021 Latin American Robotics Symposium (
LARS
), Natal, Brazil, Oct. 11–15, pp.
132
137
.10.1109/LARS/SBR/WRE54079.2021.9605482
29.
Olguín-Díaz
,
E.
,
2020
,
3D Motion of Rigid Bodies, a Foundation of Robot Dynamic Analysis
(Studies in Systems Decision and Control), Vol.
191
,
Springer Nature
,
London, UK
.
30.
Tatlicioglu
,
E.
,
Walker
,
I. D.
, and
Dawson
,
D. M.
,
2007
, “
New Dynamic Models for Planar Extensible Continuum Robot Manipulators
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), San Diego, CA, Oct. 29–Nov. 2, pp.
1485
1490
.10.1109/IROS.2007.4399334
31.
Webster
, III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
32.
Goldstein
,
H.
,
1980
,
Classical Mechanics
, 2nd ed.,
Addison-Wesley
,
Boston, MA
.
33.
Siciliano
,
B.
,
Khatib
,
O.
, and
Kröger
,
T.
,
2008
,
Springer Handbook of Robotics
, Vol.
200
,
Springer
,
London, UK
.
34.
Arimoto
,
S.
,
1995
, “
Fundamental Problems of Robot Control—Part I: Innovations in the Realm of Robot Servo-Loops
,”
Robotica
,
13
(
1
), pp.
19
27
.10.1017/S0263574700017446
35.
Slightam
,
J. E.
, and
Nagurka
,
M. L.
,
2019
, “
Theoretical Dynamic Modeling and Validation of Braided Pneumatic Artificial Muscles
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
3
), p.
031008
.10.1115/1.4045475
36.
Potvin
,
M.-J.
,
Piedboeuf
,
J.-C.
, and
Nemes
,
J. A.
,
1998
, “
Comparison of Viscoelastic Models in Simulating the Transient Response of a Slewing Polymer Arm
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
3
), pp.
340
345
.10.1115/1.2805407
You do not currently have access to this content.