Thermal management is an important aspect for any packaging technology incorporating high power devices. In this paper, we present an integrated microfluidic cooling solution for high power surface mount thin film resistors on liquid crystal polymer (LCP) substrate. High power resistors are mounted on top of a 50.8 μm (2 mil) LCP layer, a coolant can circulate, thanks to a micropump, inside a Duroid micromachined channel beneath the LCP layer in order to take away the generated heat. A thermal model is combined from existing thermal models in literature to predict the overall thermal resistance of the organic heat sink in the case of a moving coolant inside the microfluidic channel. Four sets of microfluidic channels with different thicknesses are fabricated and tested. Temperature measurements of resistors with different power ratings and sizes on top of these channels agree with the model predictions and the simulations in the case of static (nonmoving) and dynamic (moving) distilled (DI) water. With this integrated solution, the case temperature of the 40 W resistor, which is mounted on the 254 μm (10 mil) microchannel, can be cooled down to 121 °C at room temperature while the resistor is dissipating 23.2 W of power; this resistor fails to operate beyond 13.3 W in the absence of fluid circulation. This is, to the best of our knowledge, the best thermal cooling performance ever achieved on multilayer organic substrates.

References

1.
Wenquan
,
S.
, and
Tongyi
,
L.
,
2008
, “
High-Speed Mixed-Signal SoC Design for Basestation Application
,”
IEEE Asia Pacific Conference on Circuits and Systems
(
APCCAS 2008
), Macao, China, Nov. 30-Dec. 3, pp.
1562
1565
.10.1109/APCCAS.2008.4746332
2.
Ng
,
R. W. T.
,
Laurent
,
A.
, and
Sie
,
B. C.
,
2011
, “
Ultra Low Power SOC for Portable Health Monitoring Platforms
,”
IEEE 13th International Symposium On Integrated Circuits
(
ISIC
), Singapore, Dec. 12–14, pp.
293
296
.10.1109/ISICir.2011.6131954
3.
Lyne
,
K.
,
2005
, “
Cellular Handset Integration—SIP vs. SOC and Best Design Practices for SIP
,”
IEEE Custom Integrated Circuits Conference
(
CICC
), San Jose, CA, Sept. 21, pp.
765
770
.10.1109/CICC.2005.1568781
4.
Sundaram
,
V.
,
Tummala
,
R.
,
Wiedenman
,
B.
,
Liu
,
F.
,
Markondeya Raj
,
P.
,
Abothu
,
I. R.
,
Bhattacharya
,
S.
,
Varadarajan
,
M.
,
Bongio
,
E.
, and
Sherwood
,
W.
,
2006
, “
Recent Advances in Low CTE and High Density System-on-a-Package (SOP) Substrate With Thin Film Component Integration
,”
56th IEEE Electronic Components and Technology Conference
(
ECTC
),
San Diego, CA
, May 30-June 2.10.1109/ECTC.2006.1645836
5.
Lu
,
H. J.
,
Guo
,
Y. X.
,
Faeyz
,
K.
,
Cheng
,
C. K.
, and
Wei
,
J.
,
2009
, “
Liquid Crystal Polymer (LCP) for Characterization of Millimer-Wave Transmission Lines and Bandpass Filters
,”
ASME
Paper No. IMECE2009-10573.10.1115/IMECE2009-10573
6.
Poh
,
C. H. J.
,
Patterson
,
C. E.
,
Bhattacharya
,
S. K.
,
Philips
,
S. D.
,
Lourenco
,
N. E.
,
Cressler
,
J. D.
, and
Papapolymerou
,
J.
,
2012
, “
Packaging Effects of Multiple X-Band SiGe LNAs Embedded in an Organic LCP Substrate
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
8
), pp.
1351
1360
.10.1109/TCPMT.2012.2191152
7.
Miller
,
A.
, and
Hong
,
J.
,
2012
, “
Cascaded Coupled Line Filter With Reconfigurable Bandwidths Using LCP Multilayer Circuit Technology
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
6
), pp.
1577
1586
.10.1109/TMTT.2012.2189242
8.
Chung
,
D. J.
,
Amadjikpe
,
A. L.
, and
Papapolymerou
,
J.
,
2011
, “
Multilayer Integration of Low-Cost 60-GHz Front-End Transceiver on Organic LCP
,”
IEEE Antennas Wirel. Propag. Lett.
,
10
, pp.
1329
1332
.10.1109/LAWP.2011.2177802
9.
Savrun
,
E.
,
Nguyen
,
V.
, and
Gilmore
,
N.
,
2004
, “
High Thermal Conductivity Aluminum Nitride Ceramics for High Power Microwave Windows
,”
5th IEEE International Vacuum Electronics Conference
(
IVEC 2004
), Monterey, CA, Apr. 27–29, pp.
45
46
.10.1109/IVELEC.2004.1316190
10.
Su
,
Z.
,
Malen
,
J. A.
,
Freedman
,
J. P.
,
Davis
,
R. F.
,
Leach
,
J. H.
, and
Preble
,
E. A.
,
2013
, “
Dependence of Thermal Conductivities of the AlN Film in the LED Architecture on Surface Roughness and Lattice Mismatch
,”
ASME
Paper No. HT2013-17116.10.1115/V001T03A004
11.
Barisich
,
G. C.
,
Pavlidis
,
S.
,
Morcillo
,
C. A. D.
,
Chlieh
,
O. L.
,
Papapolymerou
,
J.
, and
Gebara
,
E.
,
2013
, “
An X-Band GaN HEMT Hybrid Power Amplifier With Low-Loss Wilkinson Division on AlN Substrate
,”
IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems
(
COMCAS
), Tel Aviv, Israel, Oct. 21–23.10.1109/COMCAS.2013.6685285
12.
Ling
,
J. H. L.
, and
Tay
,
A. A. O.
,
2014
, “
A New Accurate Closed-Form Analytical Solution for Junction Temperature of High-Powered Devices
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011007
.10.1115/1.4026352
13.
Kandlikar
,
S. G.
,
2014
, “
Review and Projections of Integrated Cooling Systems for Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
024001
.10.1115/1.4027175
14.
Li
,
J.
, and
Miyashita
,
H.
,
2006
, “
Post Placement Thermal via Planning for 3D Integrated Circuit
,”
IEEE Asia Pacific Conference on Circuits and Systems
(
APCCAS 2006
), Singapore, Dec. 4–7, pp.
808
811
.10.1109/APCCAS.2006.342144
15.
Mirza
,
F.
,
Naware
,
G.
,
Jain
,
A.
, and
Agonafer
,
D.
,
2014
, “
Effect of Through-Silicon-Via Joule Heating on Device Performance for Low-Powered Mobile Applications
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041008
.10.1115/1.4028076
16.
Peters
,
T. B.
,
McCarthy
,
M.
,
Allison
,
J.
,
Dominguez-Espinosa
,
F. A.
,
Jenicek
,
D.
,
Kariya
,
H. A.
,
Staats
,
W. L.
,
Brisson
,
J. G.
,
Lang
,
J. H.
, and
Wang
,
E. N.
,
2012
, “
Design of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High Performance Electronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
10
), pp.
1637
1648
.10.1109/TCPMT.2012.2207902
17.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2015
, “
Thermal Performance of Nanofluid Charged Heat Pipe With Phase Change Material for Electronics Cooling
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021004
.10.1115/1.4028994
18.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
19.
Kim
,
S.-M.
, and
Kim
,
K.-Y.
,
2014
, “
Optimization of a Hybrid Double-Side Jet Impingement Cooling System for High-Power Light Emitting Diodes
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011010
.10.1115/1.4026536
20.
Garimella
,
S. V.
,
Singhal
,
V.
, and
Liu
,
D.
,
2006
, “
On-Chip Thermal Management With Microchannel Heat Sinks and Integrated Micropumps
,”
Proc. IEEE
,
94
(
8
), pp.
1534
1548
.10.1109/JPROC.2006.879801
21.
Xie
,
Y.
,
Shen
,
Z.
,
Zhang
,
D.
, and
Lan
,
J.
,
2014
, “
Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021001
.10.1115/1.4025757
22.
Zhang
,
Y.
,
Dembla
,
A.
,
Joshi
,
Y.
, and
Bakir
,
M.
,
2012
, “
3D Stacked Microfluidic Cooling for High Performance 3D ICs
,”
IEEE 62nd Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 29-June 1, pp.
1644
1650
.10.1109/ECTC.2012.6249058
23.
Lemtiri Chlieh
,
O.
,
Morcillo
,
C. A. D.
,
Pavlidis
,
S.
,
Khan
,
W. T.
, and
Papapolymerou
,
J.
,
2013
, “
Integrated Microfluidic Cooling for GaN Devices on Multilayer Organic LCP Substrate
,”
IEEE MTT-S International Microwave Symposium Digest
(
IMS
), Seattle, WA, June 2–7.10.1109/MWSYM.2013.6697787
24.
Jo
,
B.-H.
,
Van Lerberghe
,
L. M.
,
Motsegood
,
K. M.
, and
Beebe
,
D. J.
,
2000
, “
Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer
,”
IEEE J. Microelectromech. Syst.
,
9
(
1
), pp.
76
81
.10.1109/84.825780
25.
Metz
,
S.
,
Trautmann
,
A.
, and
Renaud
,
Ph.
,
2003
, “
Polyimide Microfluidic Devices With Integrated Nanoporous Filtration Areas Manufactured by Micromachining and Ion Track Technology
,”
J. Micromech. Microeng.
,
14
(
3
), pp.
324
331
.10.1088/0960-1317/14/3/002
26.
Lemtiri Chlieh
,
O.
,
Khan
,
W. T.
, and
Papapolymerou
,
J.
,
2014
, “
Integrated Microfluidic Cooling of High Power Passive and Active Devices on Multilayer Organic Substrate
,”
IEEE MTT-S International Microwave Symposium
(
IMS
), Tampa, FL, June 1–6.10.1109/MWSYM.2014.6848611
27.
Lemczyk
,
T. F.
,
Mack
,
B.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
1991
, “
PCB Trace Thermal Analysis and Effective Conductivity
,”
Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM VII)
, Phoenix, AZ, Feb. 12–14, pp.
15
22
.10.1109/STHERM.1991.152906
28.
Albers
,
J.
,
1995
, “
An Exact Recursion Relation Solution for the Steady-State Surface Temperature of a General Multilayer Structure
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part A
,
18
(
1
), pp.
31
38
.10.1109/95.370732
29.
Lee
,
S.
,
Song
,
S.
,
Au
,
V.
, and
Moran
,
K. P.
,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
4th ASME/JSME Thermal Engineering Joint Conference
, Maui, HI, Mar. 19–24, Vol.
4
, pp.
199
206
.
30.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
31.
Thirumaleshwar
,
M.
,
2009
,
Fundamentals of Heat & Mass Transfer
,
Pearson Education
,
New Delhi, India
, Chap. 9, pp.
382
476
.
32.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
(Advances in Heat Transfer: Supplement, Vol. 1),
Academic
, New York.
33.
Smith
,
A. N.
, and
Nochetto
,
H.
,
2014
, “
Laminar Thermally Developing Flow in Rectangular Channels and Parallel Plates: Uniform Heat Flux
,”
Heat Mass Transfer J.
,
50
(
11
), pp.
1627
1637
.10.1007/s00231-014-1363-8
34.
Corcione
,
M.
,
2008
, “
Natural Convection Heat Transfer Above Heated Horizontal Surfaces
,”
5th WSEAS International Conference on Heat and Mass Transfer
(
HMT'08
), Acapulco, Mexico, Jan. 25–27, pp.
206
211
.http://www.wseas.us/e-library/conferences/2008/mexico/hmt/hmt.pdf
35.
Prasher
,
R. S.
,
2001
, “
Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
969
975
.10.1115/1.1388301
36.
Savija
,
I.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Effective Thermophysical Properties of Thermal Interface Materials: Part I—Definitions and Models
,”
ASME
Paper No. IPACK2003-35088.10.1115/IPACK2003-35088
37.
Khalsa
,
S.
, and
Subbarayan
,
G.
,
2011
, “
Squeeze Flow Models for Thermal Interface Materials Contained Between Parallel Plates and Plates With Posts
,”
ASME
Paper No. IPACK2011-52170.10.1115/IPACK2011-52170
38.
Antonetti
,
V. W.
,
Whittle
,
T. D.
, and
Simons
,
R. E.
,
1993
, “
An Approximate Thermal Contact Conductance Correlation
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
131
134
.10.1115/1.2909293
39.
Jackson
,
R. L.
,
Ghaednia
,
H.
,
Elkady
,
Y. A.
,
Bhavnani
,
S. H.
, and
Knight
,
R. W.
,
2012
, “
A Closed-Form Multiscale Thermal Contact Resistance Model
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
7
), pp.
1158
1171
.10.1109/TCPMT.2012.2193584
40.
Samson
,
E. C.
,
Machiroutu
,
S. V.
,
Chang
,
J. Y.
,
Santos
,
I.
,
Hermerding
,
J.
, and
Dani
,
A.
,
2005
, “
Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel® Centrino™ Mobile Technology
,”
Intel Technol. J.
,
9
(
1
), pp.
75
86
.http://www.intel.com/content/dam/www/public/us/en/documents/research/2005-vol09-iss-1-intel-technology-journal.pdf
41.
Darvin
,
E.
,
2012
, “
Semiconductor and IC Package Thermal Metrics
,” Texas Instruments, Dallas, TX, Application Report No. SPRA953B, available at: http://www.ti.com/lit/an/spra953b/spra953b.pdf
42.
Freescale Semiconductor, 2008, “Thermal Analysis of Semiconductor Systems
,” Freescale Semiconductor Inc., Chandler, AZ, White Paper No. BASICTHERMALWP/REV 0, see http://cache.freescale.com/files/analog/doc/white_paper/BasicThermalWP.pdf
You do not currently have access to this content.