The flow of microbubbles in millichannels with typical dimensions in the range of few millimeters offers a reduced pressure loss with simultaneous large specific contact surface. The transformation of pressure into kinetic energy creates secondary flow in micro-orifices, which results in continuous bubble dispersion. In this work, bubble flow through different orifices and channel modules with widths up to 7 mm are experimentally and numerically studied. The effect of the orifice dimensions on bubble sizes is evaluated for hydraulic diameters of 0.25–0.5 mm with different aspect ratios. To provide larger residence times of the generated dispersions in the reactor, several channel structures are analyzed to offer less coalescence. Volume flow rates of 10–250 mL/min are studied with various phase ratios. Bubble diameters are generated in the range of less than 0.1–0.7 mm with narrow size distributions depending on the entire flow rate. Opening angles of the orifices above 6 deg resulted in flow detachments and recirculation zones around the effluent jet. The first break-up point is shifted closer to the orifice outlet with increasing velocity and hydraulic diameter. The entire break-up region stays nearly constant for each orifice indicating stronger velocity oscillations acting on the bubble surface. Linear relation of smaller bubble diameters with larger energy input was identified independent from Reynolds number. Flow detachment and coalescence in bends were avoided by an additional bend within the curve based on systematically varied geometrical dimensions.

References

1.
Hessel
,
V.
,
Hardt
,
S.
, and
Löwe
,
H.
,
2004
, “
A Multi-Faceted, Hierarchic Analysis of Chemical Micro Process Technology
,”
Chemical Micro-Process Engineering: Fundamentals, Modeling and Reactions
,
Wiley-VCH
,
Weinheim, Germany
.
2.
Schneider
,
M.-A.
,
Maeder
,
T.
,
Ryser
,
P.
, and
Stoessel
,
F.
,
2004
, “
A Microreactor-Based System for the Study of Fast Exothermic Reactions in Liquid Phase: Characterization of the System
,”
Chem. Eng. J.
,
101
(1–3), pp.
241
250
.
3.
Stefanidis
,
G. D.
,
Vlachos
,
D. G.
,
Kaisare
,
N. S.
, and
Maestri
,
M.
,
2009
, “
Methane Steam Reforming at Microscales: Operation Strategies for Variable Power Output at Millisecond Contact Times
,”
AIChE J.
,
55
(
1
), pp.
180
191
.
4.
Hessel
,
V.
,
Löwe
,
H.
, and
Schönfeld
,
F.
,
2005
, “
Micromixers—A Review on Passive and Active Mixing Principles
,”
Chem. Eng. Sci.
,
60
(8–9), pp.
2479
2501
.
5.
Pennemann
,
H.
,
Watts
,
P.
,
Haswell
,
S. J.
,
Hessel
,
H.
, and
Löwe
,
H.
,
2004
, “
Benchmarking of Microreactor Applications
,”
Org. Process Res. Dev.
,
8
(
3
), pp.
422
439
.
6.
Hessel
,
V.
,
Renken
,
A.
,
Schouten
,
J. C.
, and
Yoshida
,
J.-I.
,
2009
,
Micro Process Engineering
,
Wiley-VCH
,
Weinheim, Germany
.
7.
Günther
,
A.
, and
Jensen
,
K. F.
,
2006
, “
Multiphase Microfluidics: From Flow Characteristics to Chemical and Materials Synthesis
,”
Lab Chip
,
6
(
12
), pp.
1487
1503
.
8.
Doku
,
G. N.
,
Verboom
,
W.
,
Reinhoudt
,
D. N.
, and
van den Berg
,
A.
,
2005
, “
On-Microchip Multiphase Chemistry—A Review of Microreactor Design Principles and Reagent Contacting Modes
,”
Tetrahedron
,
61
(
11
), pp.
2733
2742
.
9.
Hessel
,
V.
,
Angeli
,
P.
,
Gavriilidis
,
A.
, and
Löwe
,
H.
,
2005
, “
Gas-Liquid and Gas-Liquid-Solid Microstructured Reactors: Contacting Principles and Applications
,”
Ind. Eng. Chem. Res.
,
44
(
25
), pp.
9750
9769
.
10.
Kashid
,
M. N.
, and
Kiwi-Minsker
,
L.
,
2009
, “
Microstructured Reactors for Multiphase Reactions: State of the Art
,”
Ind. Eng. Chem. Res.
,
48
(
14
), pp.
6465
6485
.
11.
Losey
,
M. W.
,
Schmidt
,
M. A.
, and
Jensen
,
K. F.
,
2001
, “
Microfabricated Multiphase Packed-Bed Reactors: Characterization of Mass Transfer and Reactions
,”
Ind. Eng. Chem. Res.
,
40
(
12
), pp.
2555
2562
.
12.
van Steijn
,
V.
,
Kreutzer
,
M. T.
, and
Kleijn
,
C. R.
,
2007
, “
μ-PIC Study of the Formation of Segmented Flow in Microfluidic T-Junctions
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7505
7514
.
13.
Garstecki
,
P.
,
Gitlin
,
I.
,
DiLuzio
,
W.
, and
Whitesides
,
G. M.
,
2004
, “
Formation of Monodisperse Bubbles in a Microfluidic Flow-Focusing Device
,”
Appl. Phys. Lett.
,
85
(
13
), pp.
2649
2651
.
14.
Löb
,
P.
,
Pennemann
,
H.
, and
Hessel
,
V.
,
2004
, “
g/l-Dispersion in Interdigital Micromixers With Different Mixing Chamber Geometries
,”
Chem. Eng. J.
,
101
(1–3), pp.
75
85
.
15.
Zuidhof
,
K. T.
,
de Croon
,
M. H. J. M.
, and
Schouten
,
J. C.
,
2010
, “
Beckmann Rearrangement of Cyclohexanone Oxime to ε-Caprolactam in Microreactors
,”
AIChE J.
,
56
(5), pp.
1297
1304
.
16.
Tollkoetter
,
A.
, and
Kockmann
,
N.
,
2014
, “
A Modular Microfluidic System for High Flow Rate Re-Dispersion of Gas-Liquid
,”
ASME
Paper No. ICNMM2014-22048.
17.
Rothstock
,
S.
,
Hessel
,
V.
,
Löb
,
P.
, and
Werner
,
B.
,
2008
, “
Characterization of a Redispersion Microreactor by Studying Its Dispersion Performance
,”
Chem. Eng. Technol.
,
31
(
8
), pp.
1124
1129
.
18.
Kockmann
,
N.
, and
Gottsponer
,
M.
,
2010
, “
Heat Transfer Limitations of Gas-Liquid Exothermic Reactions in Microchannels
,”
ASME
Paper No. FEDSM-ICNMM2010-30389.
19.
Jovanovic
,
J.
,
Hengeveld
,
W.
,
Rebrov
,
E. V.
,
Nijhuis
,
T. A.
,
Hessel
,
V.
, and
Schouten
,
J. C.
,
2011
, “
Redispersions-Mikroreaktorsystem für eine phasentransferkatalysierte Veresterung
,”
Chem. Ing. Tech.
,
83
(
7
), pp.
1096
1106
.
20.
Oertel
,
H.
, Jr.
,
Böhle
,
M.
, and
Reviol
,
T.
,
2011
,
Grundlagen der Strömungsmechanik
,
Vieweg+Teubner
, Wiesbaden,
Germany
.
21.
Wibel
,
W.
, and
Ehrhard
,
P.
,
2009
, “
Experiments of the Laminar/Turbulent Transition of Liquid Flows in Rectangular Microchannels
,”
Heat Transfer Eng.
,
30
, pp.
70
77
.
22.
Mersmann
,
A.
, and
Grossmann
,
H.
,
1980
, “
Dispergieren im flüssigen Zweiphasensystem
,”
Chem. Ing. Tech.
,
52
(
8
), pp.
621
628
.
23.
Kockmann
,
N.
, and
Roberge
,
D. M.
,
2009
, “
Harsh Reaction Conditions in Continuous-Flow Microreactors for Pharmaceutical Production
,”
Chem. Eng. Technol.
,
32
(
11
), pp.
1682
1694
.
24.
Matsuyama
,
K.
,
Mine
,
K.
,
Kubo
,
H.
,
Aoki
,
N.
, and
Mae
,
K.
,
2010
, “
Optimization Methodology of Operation of Orifice-Shaped Micromixer Based on Micro-Jet Concept
,”
Chem. Eng. Sci.
,
65
(
22
), pp.
5912
5920
.
25.
Schubert
,
H.
,
2003
,
Handbuch der Mechanischen Verfahrenstechnik
,
Wiley-VCH
,
Weinheim, Germany
.
26.
Liepe
,
F.
,
Meusel
,
W.
,
Möckel
,
H.
,
Platzer
,
B.
, and
Weissgärber
,
H.
,
1988
, “
Stoffvereinigen in fluiden Phasen
,”
Verfahrenstechnische Berechnungsmethoden
,
Wiley-VCH
,
Weinheim, Germany
.
27.
Cordova
,
M.
,
2007
, “
Modellierung und Simulation der stationären und instationären Strömung in Diffusoren
,” Ph.D. thesis, Technical University Darmstadt, Darmstadt, Germany.
28.
von Böckh
,
P.
, and
Saumweber
,
C.
,
2013
,
Fluidmechanik
,
Springer
,
Berlin
.
29.
Liao
,
Y.
, and
Lucas
,
D.
,
2009
, “
A Literature Review of Theoretical Models for Drop and Bubble Breakup in Turbulent Dispersions
,”
Chem. Eng. Sci.
,
64
(
15
), pp.
3389
3406
.
30.
Garstecki
,
P.
,
2010
, “
Formation of Droplets and Bubbles in Microfluidic Systems
,”
Microfluidics Based Microsystems
,
Springer
,
Dordrecht
, pp.
163
181
.
31.
Andersson
,
R.
, and
Andersson
,
B.
,
2006
, “
On the Breakup of Fluid Particles in Turbulent Flows
,”
AIChE J.
,
52
(
6
), pp.
2020
2030
.
You do not currently have access to this content.