Abstract

A thermosyphon-based modular cooling approach offers an energy efficient cooling solution with an increased potential for waste heat recovery. Central to the cooling system is an air-refrigerant finned tube heat exchanger (HX), where air is cooled by evaporating refrigerant. This work builds on a previously published two-dimensional (2D) model for the finned-tube HX by updating and validating the model using in-house experimental data collected from the proposed system using R1233zd(E) as the working fluid. The results show that key system variables such as refrigerant outlet quality, air and refrigerant outlet temperatures, and exchanger duty agree within 20% of their experimental counterparts. The validated model is then used to predict the mean heat transfer coefficient on the refrigerant side for each tube in the direction of airflow, indicating a maximum heat transfer coefficient of nearly 1200 W/(m2 K) for a HX duty of 5.3 kW among the tested cases. The validated model therefore enables accurate predictions of HX performance and provides insights into improving the heat exchange efficiency and the corresponding system performance.

References

1.
Bizo
,
D.
,
Ascierto
,
R.
,
Lawrence
,
A.
, and
Davis
,
J.
,
2021
, “
Uptime Institute Global Data Center Survey 2021
,” UII-511, Uptime Institute, New York.
2.
Tradat
,
M.
,
Mohsenian
,
G.
,
Manaserh
,
Y.
,
Sammakia
,
B.
,
Mendo
,
D.
, and
Alissa
,
H. A.
,
2020
, “
Experimental Analysis of Different Measurement Techniques of Server-Rack Airflow Predictions Towards Proper DC Airflow Management
,”
Proceedings of the 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Orlando, FL
, July 21–23, pp.
366
373
.10.1109/ITherm45881.2020.9190584
3.
Tradat
,
M. I.
,
Mohammad
,
Y.
,
Manaserh
,
A.
,
Sammakia
,
B. G.
,
Hoang
,
C. H.
, and
Alissa
,
H. A.
,
2021
, “
An Experimental and Numerical Investigation of Novel Solution for Energy Management Enhancement in Data Centers Using Underfloor Plenum Porous Obstructions
,”
Appl. Energy
,
289
, p.
116663
.10.1016/j.apenergy.2021.116663
4.
ASHRAE
,
2015
,
Thermal Guidelines for Data Processing Environments
, 4th ed.,
ASHRAE
,
Atlanta, GA
.
5.
Miller
,
R.
,
2020
, “
Rack Density Keeps Rising at Enterprise Data Centers
,” Data Center Frontier, accessed June 4, 2020, https://datacenterfrontier.com/rack-density-keeps-rising-at-enterprise-data-centers/
6.
Fujitsu Limited
,
2015
, “
Fujitsu Cool-Central Liquid Cooling Technology
,”
Presented at the ISC15
, Frankfurt, Germany, July 12–16.https://www.fujitsu.com/dk/imagesgig5/fujitsu-coolcentral-liquid-cooling-technology.pdf
7.
Wu
,
D.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2013
, “
Experimental Evaluation of a Controlled Hybrid Two-Phase Multi-Microchannel Cooling and Heat Recovery System Driven by Liquid Pump and Vapor Compressor
,”
Int. J. Refrig.
,
36
(
2
), pp.
375
389
.10.1016/j.ijrefrig.2012.11.011
8.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
, and
Thome
,
J. R.
,
2012
, “
On-Chip Two-Phase Cooling of Datacenters: Cooling System and Energy Recovery Evaluation
,”
Appl. Therm. Eng.
,
41
, pp.
36
51
.10.1016/j.applthermaleng.2011.12.008
9.
Khalid
,
R.
,
Schon
,
S. G.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
,
2019
, “
Waste Heat Recovery Using Coupled 2-Phase Cooling Heat-Pump Driven Absorption Refrigeration
,”
Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Las Vegas, NV, May 28–31, pp.
684
692
.10.1109/ITHERM.2019.8757465
10.
Khalid
,
R.
,
Amalfi
,
R. L.
, and
Wemhoff
,
A. P.
,
2021
, “
Rack-Level Thermosyphon Cooling and Vapor-Compression Driven Heat Recovery: Evaporator Model
,” ASME Paper No. IPACK2021-73269. 10.1115/IPACK2021-73269
11.
McQuiston
,
F. C.
,
1980
, “
Finned Tube Heat Exchangers: State of the Art for the Air Side
,”
Presented at the 5th Annual Heat Pump Technology Conference
,
Oklahoma State University
,
Stillwater, OK
, Apr. 14–15.https://ui.adsabs.harvard.edu/abs/1980ahpt.confR..14M/abstract
12.
McQuiston
,
F. C.
,
1978
, “
Heat, Mass and Momentum Transfer Data for Five Plate-Fin-Tube Heat Transfer Surfaces
,”
ASHRAE Trans.
,
84
(
1
), pp.
266
293
.https://www.techstreet.com/standards/at-2486-rp-155-heat-mass-and-momentum-transfer-data-for-five-plate-fin-tube-heat-transfer-surfaces?product_id=1854047
13.
Rich
,
D. G.
,
1973
, “
The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row, Smooth Plate-Fin-and-Tube Heat Exchangers
,”
ASHRAE Trans.
,
79
(
2
), pp.
137
145
.https://books.google.co.in/books/about/The_Effect_of_Fin_Spacing_on_the_Heat_Tr.html?id=XcKErgEACAAJ&redir_esc=y
14.
Schmidt
,
T. E.
,
1945
, “
La Production Calorifique Des Surfaces Munies D'ailettes
,”
Annexe Du Bulletin De L'Institut International Du Froid, Annexe G-5
,
International Institute of Refrigeration (IIR)
,
Paris, France
.
15.
Hong
,
K. T.
, and
Webb
,
R.
,
1996
, “
Calculation of Fin Efficiency for Wet and Dry Fins
,”
HVACR Res.
,
2
(
1
), pp.
27
41
.10.1080/10789669.1996.10391331
16.
Kandlikar
,
S. G.
,
1983
, “
An Improved Correlation for Predicting Two-Phase Flow Boiling Heat Transfer Coefficient in Horizontal and Vertical Tubes
,”
Heat Exchangers for Two-Phase Applications
,
Seattle, WA, July 24
.https://www.semanticscholar.org/paper/An-improvedcorrelation-for-predicting-two-phase-in-Kandlikar/9a000f116abba6014b3c00dbba565306d12109a0
17.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
18.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.10.1016/0017-9310(79)90058-9
19.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
20.
Qiao
,
H.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2015
, “
Transient Modeling of a Flash Tank Vapor Injection Heat Pump System—Part I: Model Development
,”
Int. J. Refrig.
,
49
, pp.
169
182
.10.1016/j.ijrefrig.2014.06.019
21.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process.: Process Intensif.
,
20
(
6
), pp.
297
308
.10.1016/0255-2701(86)80008-3
22.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.10.1016/0017-9310(70)90114-6
23.
Albertsen
,
B.
, and
Schmitz
,
G.
,
2021
, “
Experimental Parameter Studies on a Two-Phase Loop Thermosyphon Cooling System With R1233zd(E) and R1224 yd(Z)
,”
Int. J. Refrig.
,
131
, pp.
146
156
.10.1016/j.ijrefrig.2021.07.036
24.
Woldesemayat
,
M. A.
, and
Ghajar
,
A. J.
,
2007
, “
Comparison of Void Fraction Correlations for Different Flow Patterns in Horizontal and Upward Inclined Pipes
,”
Int. J. Multiphase Flow
,
33
(
4
), pp.
347
370
.10.1016/j.ijmultiphaseflow.2006.09.004
25.
Zukauskus
,
A.
, and
Ulinskas
,
R.
,
1998
, “
Banks of Plain and Finned Tubes,” Heat Exchanger Design Handbook
,
G. F.
Hewitt
, ed.,
Begell House
,
New York
.
26.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
27.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
28.
Frei
,
M.
,
Hischier
,
I.
,
Deb
,
C.
,
Sigrist
,
D.
, and
Schlueter
,
A.
,
2021
, “
Impact of Measurement Uncertainty on Building Modeling and Retrofitting Decisions
,”
Front. Built Environ.
,
7
.10.3389/fbuil.2021.675913
29.
Omega Engineering
,
Omega Temperature Measurement Handbook
, 6th ed.
30.
ASME
,
2006
, “
Test Uncertainty
,”
ASME
,
New York
, Report No. PTC-19.1.
31.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
32.
Mondéjar
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans -1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)): Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
33.
Perkins
,
R. A.
,
Huber
,
M. L.
, and
Assael
,
M. J.
,
2017
, “
Measurement and Correlation of the Thermal Conductivity of Trans -1-Chloro-3,3,3-Trifluoropropene (R1233zd(E))
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2659
2665
.10.1021/acs.jced.7b00106
34.
Kondou
,
C.
,
Nagata
,
R.
,
Nii
,
N.
,
Koyama
,
S.
, and
Higashi
,
Y.
,
2015
, “
Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E)
,”
Int. J. Refrig.
,
53
, pp.
80
89
.10.1016/j.ijrefrig.2015.01.005
35.
Ghiaasiaan
,
S. M.
,
2007
, “
Two-Phase Flow, Boiling and Condensation
,”
Conventional and Miniature Systems
,
Cambridge University Press
,
Cambridge, UK
.
36.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, eds.,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
37.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2002
,
Fundamentals of Fluid Mechanics
, 4th ed.,
Wiley
,
New York
.
38.
Shah
,
M. M.
,
2022
, “
New General Correlation for Heat Transfer During Saturated Boiling in Mini and Macro Channels
,”
Int. J. Refrig.
,
137
, pp.
103
116
.10.1016/j.ijrefrig.2022.02.019
39.
Liu
,
Z.
, and
Winterton
,
R.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.10.1016/0017-9310(91)90234-6
40.
Cooper
,
M. G.
,
1984
, “
Saturation Nucleate Pool Boiling—A Simple Correlation
,”
First U.K. National Conference on Heat Transfer
, Vol.
86
,
Elsevier
,
Leeds, UK
, pp.
785
793
.
41.
McQuiston
,
F. C.
, and
Parker
,
J. P.
,
1994
,
Heating Ventilating and Air-Conditioning-Analysis and Design
,
Wiley
,
New York
.
42.
Degree Controls
,
2022
, “
°C Grid Multi-Point Air Measurement System
,” Degree Controls, Nashua, NH, accessed Dec. 31, 2022, https://www.degreec.com/products/airflow-tools-instruments/airflow-measurement-instrumentation/c-grid/
43.
Degree Controls
,
2022
, “
°C Grate Air Velocity and Temperature Measurement
,” Degree Controls, Nashua, NH, accessed Dec. 31, 2022, https://www.degreec.com/products/airflow-tools-instruments/airflow-tools/c-grate/
44.
Setra Systems
,
2022
, “
Model 230 Wet-to-Wet Differential Water Pressure Transducer
,” Setra Systems, Boxborough, MA, accessed Dec. 31, 2022, https://www.setra.com/product/pressure/model-230
You do not currently have access to this content.