Abstract

In this paper, we present our results on a relatively new kind of blower called Volumetric Resistance Blower (VRB) for cooling of portable computing platforms like laptop computers. The VRB performance was modeled numerically and compared to traditional bladed blowers. The sources of noise, dominant in bladed blower, are absent in case of VRB, because it uses a continuous porous disk instead of discrete blades. Thus, even though at iso-rpm, VRB yielded lower flowrate, its iso-acoustic performance could be superior. Hence, further analysis was crucial to quantify the potential benefit. The acoustics experiments for bladed blower and VRB were conducted in a hemi-anechoic chamber in accordance with ECMA-74 and ECMA TR/99 standards. Iso-acoustics pressure versus volume flowrate plot for both bladed blower and VRB are compared. VRB was found to have superior performance as compared to bladed blower. The volume flowrate at open flow condition for bladed blower and VRB are comparable, but as back pressure increased the flowrate yielded by VRB kept increasing and at stagnation condition, VRB showed around 79% higher static pressure. In the second part of the work, the experimentally validated numerical model for VRB was used for numerical optimization using a design of experiments (DOE) approach and varying the geometrical parameters. Rotor distance (minimum distance from the axis of rotation of impeller to the cutwater surface) was found to be the most important parameter, and an optimum value was found. A second DOE elucidated the optimal rotor hub center location in the two-dimensional space inside the casing as when the rotor is tucked back into the casing as much as possible and when the rotor distance is above 20.15 mm. A partial P–Q curve is generated (up to 20 Pa) for optimal geometry configuration. Based on the numerical and experimental evidence, VRB is found to have the potential to replace traditional bladed design in portable computing devices. In addition, due to absence of blades, it creates lower tonal noise, giving a much more comfortable experience to the end user.

References

1.
Chu, R. C, Simons, R. E., Ellsworth, M. J., Schmidt, R. R, and Cozzolino, V., 2004, “Review of Cooling Technologies for Computer Products”
IEEE Trans. Device Mater. Reliab.
, 4(4), pp. 568–685.10.1109/TDMR.2004.840855
2.
Gullbrand, J., Luckeroth, M. J., Sprenger, M. E., and Winkel, C., 2019, “Liquid Cooling of Compute System,”
ASME J. Electron. Packag.
, 141(1), p. 010802.10.1115/1.4042802
3.
MacDonald
,
M.
, and
Heymann
,
D.
,
2013
, “
Volumetric Resistance Blower
,”
Proceedings of Meetings on Acoustics, ICA
,
Montreal, PQ, Canada
, June 2–7, Vol.
19
, p.
030013
.10.1121/1.4799927
4.
MacDonald
,
M.
,
Gullbrand
,
J.
,
Nishi
,
Y.
, and
Baugh
,
E.
,
2009
, “
Notebook Blower Inlet Flow and Acoustics: Experiments and Simulations
,”
Noise Control Eng. J.
,
57
(
4
), pp.
348
359
.10.3397/1.3151971
5.
Neise
,
W.
,
1982
, “
Review of Noise Reduction Methods for Centrifugal Fans
,”
ASME J. Manuf. Sci. Eng.
,
104
(
2
), pp.
151
161
.10.1115/1.3185810
6.
Xu
,
C.
, and
Mao
,
Y.
,
2016
, “
Experimental Investigation of Metal Foam for Controlling Centrifugal Fan Noise
,”
Appl. Acoust.
,
104
, pp.
182
192
.10.1016/j.apacoust.2015.11.014
7.
Datong
,
Q.
,
Yijun
,
M.
,
Xiaoliang
,
L.
, and
Minjian
,
Y.
,
2009
, “
Experimental Study on the Noise Reduction of an Industrial Forward-Curved Blades Centrifugal Fan
,”
Appl. Acoust.
,
70
(
8
), pp.
1041
1050
.10.1016/j.apacoust.2009.03.002
8.
Maruri
,
H. A. C.
, and
Bustamante
,
F. O.
,
2009
, “
Active Control of Periodic Fan Noise in Laptops: Spectral Width Requirements in a Delayed Buffer Implementation
,”
J. Appl. Res. Technol.
,
7
(
2
), pp.
124
135
.10.22201/icat.16656423.2009.7.02.495
9.
Kibler
,
K. G.
, and
Carter
,
H. G.
, Jr
,
1974
, “
Electro Cooling in Gases
,”
J. Appl. Phys.
,
45
(
10
), pp.
4436
4440
.10.1063/1.1663069
10.
Molki
,
M.
,
Ohadi
,
M. M.
,
Baumgarten
,
B.
,
Hasegawa
,
M.
, and
Yabe
,
A.
,
2000
, “
Heat Transfer Enhancement of Airflow in a Channel Using Corona Discharge
,”
J. Enhanced Heat Transfer
,
7
(
6
), pp.
411
425
.10.1615/JEnhHeatTransf.v7.i6.40
11.
Rashkovan
,
A.
,
Sher
,
E.
, and
Kalman
,
H.
,
2002
, “
Experimental Optimization of an Electric Blower by Corona Wind
,”
Appl. Therm. Eng.
,
22
(
14
), pp.
1587
1599
.10.1016/S1359-4311(02)00082-0
12.
Kasayapanand
,
N.
,
2008
, “
Electrohydrodynamic Enhancement of Heat Transfer in Vertical Fin Array Using Computational Fluid Dynamics Technique
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
762
770
.10.1016/j.icheatmasstransfer.2008.02.008
13.
Chen
,
I. Y.
,
Chen
,
C. J.
, and
Wang
,
C. C.
,
2014
, “
Influence of Electrode Configuration on the Heat Transfer Performance of a LED Heat Source
,”
Int. J. Heat Mass Transfer
,
77
, pp.
795
801
.10.1016/j.ijheatmasstransfer.2014.06.023
14.
Johnson
,
M. J.
, and
Go
,
D. B.
,
2017
, “
Recent Advances in Electrohydrodynamic Pumps Operated by Ionic Winds: A Review
,”
Plasma Sources Sci. Technol.
,
26
(
10
), p.
103002
.10.1088/1361-6595/aa88e7
15.
Venkatesh
,
S.
,
Kumar
,
A.
,
Bhattacharya
,
A.
, and
Pramanik
,
S.
,
2021
, “
Ionic Wind Review-2020: Advancement and Application in Thermal Management
,”
Sādhanā
,
46
(
3
), p.
165
.10.1007/s12046-021-01687-0
16.
Mathew
,
B.
,
John
,
T. J.
,
Ogbonnaya
,
E.
,
Champagne
,
C.
,
Weiss
,
L. W.
, and
Hegab
,
H.
,
2011
, “
Solid State Refrigerator for Microchips
,”
Sci. Adv. Mater.
,
3
(
4
), pp.
672
681
.10.1166/sam.2011.1199
17.
Jia
,
Y.
, and
Ju
,
Y. S.
,
2012
, “
A Solid-State Refrigerator Based on the Electrocaloric Effect
,”
Appl. Phys. Lett.
,
100
(
24
), p.
242901
.10.1063/1.4729038
18.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2010
, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
504
513
.10.1016/j.ijthermalsci.2009.09.004
19.
Ma
,
H. K.
,
Chen
,
B. R.
,
Gao
,
J. J.
, and
Lin
,
C. Y.
,
2009
, “
Development of an OAPCP-Micropump Liquid Cooling System in a Laptop
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
225
232
.10.1016/j.icheatmasstransfer.2008.11.014
20.
Tang
,
Y.
,
Jia
,
M.
,
Ding
,
X.
,
Li
,
Z.
,
Wan
,
Z.
,
Lin
,
Q.
, and
Fu
,
T.
,
2019
, “
Experimental Investigation on Thermal Management Performance of an Integrated Heat Sink With a Piezoelectric Micropump
,”
Appl. Therm. Eng.
,
161
, p.
114053
.10.1016/j.applthermaleng.2019.114053
21.
Bergles
,
A. E.
, and
Bar-Cohen
,
A.
,
1994
, “
Immersion Cooling of Digital Computers
,”
Cooling of Electronic Systems
, Vol.
258
,
S.
Kakaç
,
H.
Yüncü
, and
K.
Hijikata
, eds.,
NATO ASI Series (Series E
: Applied Sciences), Springer, Dordrecht, The Netherlands, pp.
539
621
.
22.
Birbarah
,
P.
,
Gebrael
,
T.
,
Foulkes
,
T.
,
Stillwell
,
A.
,
Moore
,
A.
,
Pilawa-Podgurski
,
R.
, and
Miljkovic
,
N.
,
2020
, “
Water Immersion Cooling of High Power Density Electronics
,”
Int. J. Heat Mass Transfer
,
147
, p.
118918
.10.1016/j.ijheatmasstransfer.2019.118918
23.
Goel
,
S.
,
Kumar
,
A.
,
Mali
,
R.
,
Kanivihalli
,
R.
,
Konakall
,
S.
,
MacDonald
,
M.
, and
Bhattacharya
,
A.
,
2022
, “
Numerical Modelling and Simulation of Plated Blowers for Cooling of Mobile Computing Platforms
,” IEEE 24th Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 7–9, pp.
898
903
.0.1109/EPTC56328.2022.10013295
24.
Girhe
,
S.
,
Cardenas
,
R.
,
MacDonald
,
M.
, and
Bhattacharya
,
A.
,
2021
, “
Numerical Modeling and Simulation of a Volumetric Resistance Blower Using Porous Rotor
,”
ASME J. Electron. Packag.
,
143
(
2
), p.
021004
.10.1115/1.4048036
25.
Nield
,
D. A.
, and
Bejan
,
A.
,
1992
,
Convection in Porous Media
,
Springer Science + Business Media
,
New York
.
26.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three- Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
27.
ANSI/AMCA
,
2016
, “
Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating
,” HANDBOOK/MANUAL/GUIDE, Air Movement and Control Association, Arlington Heights, IL, Standard No.
210-16/ASHRAE 51-16
.https://www.amca.org/assets/resources/public/pdf/Education%20Modules/AMCA%20210-16.pdf
You do not currently have access to this content.