Abstract

Printed Circuit Board (PCB) is one of the most important components of electronic products. But the traditional defect detection methods are gradually difficult to meet the requirements of PCB defect detection. The research on PCB defect recognition method based on convolutional neural network is the current trend. The PCB defect image recognition based on DenseNet169 network model is studied in this paper. In order to reduce the omission of PCB defects in actual detection, it is necessary to further improve the sensitivity of the model. Therefore, a classification model based on the multimodel fusion of the DenseNet169 model and the ResNet50 model is proposed. At the same time, the network structure after multimodel fusion is improved. The improved multimodel fusion model Mix-Fusion enables the network to not only retain the recognition accuracy of the ResNet50 model for NG defects and small defect images but also improve the overall recognition accuracy through the feature reuse and bypass settings of the DenseNet169 model. The experimental results show that when the threshold is 0.5, the sensitivity of the improved multimodel fusion network can reach 99.2%, and the specificity is 99.5%. The sensitivity of Mix-Fusion is 1.2% higher than that of DenseNet169. High sensitivity means fewer missed NG images, and high specificity means less workload for employees. The improved model improves sensitivity and maintains high specificity.

References

1.
Zeng
,
N. Y.
,
Wu
,
P. S.
,
Wang
,
Z. D.
,
Li
,
H.
,
Liu
,
W. B.
, and
Liu
,
X. H.
,
2022
, “
A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
14
.10.1109/TIM.2022.3153997
2.
Xie
,
H. F.
,
Li
,
Y.
,
Li
,
X. C.
, and
Li
,
H.
,
2021
, “
A Method for Surface Defect Detection of Printed Circuit Board Based on Improved YOLOv4
,” 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (
ICBAIE
), Nanchang, China, Mar. 26–28, pp.
851
857
.10.1109/ICBAIE52039.2021.9390006
3.
Asadizanjani
,
N.
,
Rahman
,
M. T.
, and
Tehranipoor
,
M.
,
2021
, “
Physical Inspection of Printed Circuit Boards
,” Physical Assurance: For Electronic Devices and Systems, Springer Nature Switzerland AG, Gewerbestrasse, Switzerland, pp. 67–99.
4.
Baygin
,
M.
,
Karakose
,
M.
,
Sarimaden
,
A.
, and
Akin
,
E.
,
2017
, “
Machine Vision Based Defect Detection Approach Using Image Processing
,” 2017 International Artificial Intelligence and Data Processing Symposium (
IDAP
), Malatya, Turkey, Sept. 16–17, pp.
1
5
.10.1109/IDAP.2017.8090292
5.
Qi
,
M.
,
Wang
,
Y.
,
Chen
,
Y. S.
,
Xin
,
H. J.
,
Xu
,
Y. L.
,
Meng
,
H. Y.
, and
Wang
,
A.
,
2022
, “
Center Detection Algorithm for Printed Circuit Board Circular Marks Based on Image Space and Parameter Space
,”
J. Electron. Imaging
,
32
(
1
), p.
011002
.10.1117/1.JEI.32.1.011002
6.
Gaidhane
,
V. H.
,
Hote
,
Y. V.
, and
Singh
,
V.
,
2018
, “
An Efficient Similarity Measure Approach for PCB Surface Defect Detection
,”
Pattern Anal. Appl.
,
21
(
1
), pp.
277
289
.10.1007/s10044-017-0640-9
7.
Kim
,
J.
,
Ko
,
J.
,
Choi
,
H.
, and
Kim
,
H.
,
2021
, “
Printed Circuit Board Defect Detection Using Deep Learning Via a Skip-Connected Convolutional Autoencoder
,”
Sensors
,
21
(
15
), p.
4968
.10.3390/s21154968
8.
Ren
,
A.
,
Li
,
Z.
,
Ding
,
C. W.
,
Qiu
,
Q. R.
,
Wang
,
Y. Z.
,
Li
,
J.
,
Qian
,
X. H.
, and
Yuan
,
B.
,
2017
, “
SC-DCNN: Highly-Scalable Deep Convolutional Neural Network Using Stochastic Computing
,”
ACM SIGPLAN Not.
,
52
(
4
), pp.
405
418
.10.1145/3093336.3037746
9.
Araujo
,
A.
,
Norris
,
W.
, and
Sim
,
J.
,
2019
, “
Computing Receptive Fields of Convolutional Neural Networks
,”
Distill
,
4
(
11
), p.
e21
.10.23915/distill.00021
10.
Ding
,
R. W.
,
Dai
,
L. H.
,
Li
,
G. P.
, and
Liu
,
H.
,
2019
, “
TDD-Net: A Tiny Defect Detection Network for Printed Circuit Boards
,”
CAAI Trans. Intell. Technol.
,
4
(
2
), pp.
110
116
.10.1049/trit.2019.0019
11.
Tan
,
F. G.
,
Zhou
,
F. M.
,
Liu
,
L. S.
,
Li
,
J. X.
,
Luo
,
K.
,
Ma
,
Y.
,
Su
,
L. X.
,
Lin
,
H. L.
, and
He
,
Z. G.
,
2020
, “
Detection of Wrong Components in Patch Component Based on Transfer Learning
,”
J. Network Intell.
,
5
(
1
), pp.
1
9
.https://bit.nkust.edu.tw/~jni/2020/vol5/01-v5n1-00090.pdf
12.
Zhang
,
H.
,
Jiang
,
L. X.
, and
Li
,
C. Q.
,
2021
, “
CS-ResNet: Cost-Sensitive Residual Convolutional Neural Network for PCB Cosmetic Defect Detection
,”
Expert Syst. Appl.
,
185
, p.
115673
.10.1016/j.eswa.2021.115673
13.
Li
,
D. S.
,
Xu
,
L.
,
Ran
,
G. Z.
, and
Guo
,
Z. L.
,
2021
, “
Computer Vision Based Research on PCB Recognition Using SSD Neural Network
,”
J. Phys.: Conf. Ser.
,
1815
(
1
), p.
012005
.10.1088/1742-6596/1815/1/012005
14.
Huang
,
G.
,
Liu
,
S. C.
,
Van der Maaten
,
L.
, and
Weinberger
,
K. Q.
,
2018
, “
CondenseNet: An Efficient DenseNet Using Learned Group Convolutions
,”
2018 IEEE/CVF Conference on Computer Vision Pattern Recognition
, Salt Lake City, UT, June 18–22, pp.
2752
2761
.10.1109/CVPR.2018.00291
15.
Zhang
,
K.
,
Guo
,
Y. G.
,
Wang
,
X. S.
,
Yuan
,
J. S.
, and
Ding
,
Q. L.
,
2019
, “
Multiple Feature Reweight DenseNet for Image Classification
,”
IEEE Access
,
7
, pp.
9872
9880
.10.1109/ACCESS.2018.2890127
16.
Zhu
,
Y.
, and
Newsam
,
S.
,
2017
, “
DenseNet for Dense Flow
,” 2017 IEEE International Conference on Image Processing (
ICIP
), Beijing, China, Sept. 17–20, pp.
790
794
.10.1109/ICIP.2017.8296389
17.
Gao
,
S. H.
,
Cheng
,
M. M.
,
Zhao
,
K.
,
Zhang
,
X. Y.
,
Yang
,
M. H.
, and
Torr
,
P.
,
2021
, “
Res2Net: A New Multi-Scale Backbone Architecture
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
2
), pp.
652
662
.10.1109/TPAMI.2019.2938758
18.
Zhou
,
W. J.
,
Chen
,
Y. Z.
,
Liu
,
C.
, and
Yu
,
L.
,
2020
, “
GFNet: Gate Fusion Network With Res2Net for Detecting Salient Objects in RGB-D Images
,”
IEEE Signal Process. Lett.
,
27
, pp.
800
804
.10.1109/LSP.2020.2993471
19.
Yang
,
C.
,
Guo
,
Z. W.
, and
Liu
,
Y.
,
2020
, “
Fast and Precise Energy Consumption Prediction Based on Fully Convolutional Attention Res2Net
,” ACM Turing Celebration Conference (
TURC
), Hefei, China, May 22–24, pp.
185
189
.10.1145/3393527.3393559
You do not currently have access to this content.