Abstract

In this paper, a variable density topology optimization method is used to design a high thermal conductivity path structure for efficient heat dissipation. The temperature and stiffness in the module volume are taken as the objective function. Simulations are carried out to compare with a high-power electronics device heat dissipation. The heat dissipation performance (HDP) of structures optimized topologically is further enhanced through the use of auxiliary materials, including highly thermally conductive coating material and phase change material (PCM). The efficient heat dissipation of the constructed topology optimization model and the effectiveness of the proposed method are verified.

References

1.
Dede
,
E. M.
,
2009
, “
Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems
,”
Proceedings of the COMSOL Users Conference
, Boston, MA, July 15, p.
715
.https://www.comsol.com/paper/download/44388/Dede.pdf
2.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.10.1115/1.4030989
3.
Haertel
,
J. H. K.
,
Engelbrecht
,
K.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2015
, “
Topology Optimization of Thermal Heat Sinks
,”
Proceedings of COMSOL Conference
, Grenoble, France, Oct. 14–16, pp.
1
6
.https://backend.orbit.dtu.dk/ws/portalfiles/portal/118673710/Topology_Optimization_of_Thermal_Heat_Sinks.pdf
4.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.10.1016/j.ijheatmasstransfer.2016.05.013
5.
Zhou
,
M.
,
Alexandersen
,
J.
,
Sigmund
,
O.
, and
W. Pedersen
,
C. B.
,
2016
, “
Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
1045
1060
.10.1007/s00158-016-1433-2
6.
Dede
,
E. M.
,
Zhou
,
F.
,
Schmalenberg
,
P.
, and
Nomura
,
T.
,
2018
, “
Thermal Metamaterials for Heat Flow Control in Electronics
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010904
.10.1115/1.4039020
7.
Sha
,
W.
,
Hu
,
R.
,
Xiao
,
M.
,
Chu
,
S.
,
Zhu
,
Z.
,
Qiu
,
C.-W.
, and
Gao
,
L.
,
2022
, “
Topology-Optimized Thermal Metamaterials Traversing Full-Parameter Anisotropic Space
,”
Npj Comput. Mater.
,
8
(
1
), p.
179
.10.1038/s41524-022-00861-0
8.
Ahmed
,
H. E.
,
Salman
,
B. H.
,
Kherbeet
,
A.
, and
Ahmed
,
M. I.
,
2018
, “
Optimization of Thermal Design of Heat Sinks: A Review
,”
Int. J. Heat Mass Transfer
,
118
, pp.
129
153
.10.1016/j.ijheatmasstransfer.2017.10.099
9.
Mitra
,
A.
,
Kumar
,
R.
,
Singh
,
D. K.
, and
Said
,
Z.
,
2022
, “
Advances in the Improvement of Thermal-Conductivity of Phase Change Material-Based Lithium-Ion Battery Thermal Management Systems: An Updated Review
,”
J. Energy Storage
,
53
, p.
105195
.10.1016/j.est.2022.105195
10.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.10.1016/j.applthermaleng.2016.10.134
11.
Chen
,
F.
,
Wang
,
J.
, and
Yang
,
X.
,
2022
, “
Topology Optimization Design and Numerical Analysis on Cold Plates for Lithium-Ion Battery Thermal Management
,”
Int. J. Heat Mass Transfer
,
183
, p.
122087
.10.1016/j.ijheatmasstransfer.2021.122087
12.
Ji
,
H.
,
Luo
,
T.
,
Dai
,
L.
,
He
,
Z.
, and
Wang
,
Q.
,
2023
, “
Topology Design of Cold Plates for Pouch Battery Thermal Management Considering Heat Distribution Characteristics
,”
Appl. Therm. Eng.
,
224
, p.
119940
.10.1016/j.applthermaleng.2022.119940
13.
Zou
,
A.
,
Chuan
,
R.
,
Qian
,
F.
,
Zhang
,
W.
,
Wang
,
Q.
, and
Zhao
,
C.
,
2022
, “
Topology Optimization for a Water-Cooled Heat Sink in Micro-Electronics Based on Pareto Frontier
,”
Appl. Therm. Eng.
,
207
, p.
118128
.10.1016/j.applthermaleng.2022.118128
14.
Duan
,
Z.
,
Xie
,
G.
,
Yu
,
B.
, and
Jin
,
P.
,
2023
, “
Multi-Objective Topology Optimization and Thermal Performance of Liquid-Cooled Microchannel Heat Sinks With Pin Fins
,”
Case Stud. Therm. Eng.
,
49
, p.
103178
.10.1016/j.csite.2023.103178
15.
Zeng
,
S.
,
Sun
,
Q.
, and
Lee
,
P. S.
,
2020
, “
Thermohydraulic Analysis of a New Fin Pattern Derived From Topology Optimized Heat Sink Structures
,”
Int. J. Heat Mass Transfer
,
147
, p.
118909
.10.1016/j.ijheatmasstransfer.2019.118909
16.
Ghosh
,
N.
,
Garg
,
A.
,
Li
,
W.
,
Gao
,
L.
, and
Nguyen-Thoi
,
T.
,
2021
, “
Engineering Design of Battery Module for Electric Vehicles: Comprehensive Framework Development Based on Density Functional Theory, Topology Optimization, Machine Learning, Multidisciplinary Design Optimization, and Digital Twins
,”
ASME J. Electrochem. Energy Convers. Storage
, 19(3), p.
030902
.10.1115/1.4052042
17.
Xie
,
L.
,
Zhang
,
Y.
,
Ge
,
M.
, and
Zhao
,
Y.
,
2022
, “
Topology Optimization of Heat Sink Based on Variable Density Method
,”
Energy Rep.
,
8
, pp.
718
726
.10.1016/j.egyr.2021.11.214
18.
See
,
Y. S.
,
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2022
, “
Experimental Investigation of a Topology-Optimized Phase Change Heat Sink Optimized for Natural Convection
,”
Appl. Energy
,
314
, p.
118984
.10.1016/j.apenergy.2022.118984
19.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.10.1007/s00158-013-0956-z
20.
Wang
,
J.
,
Liu
,
X.
, and
Wang
,
Y.
,
2023
, “
Topology Optimization of Micro-Channel Reactors Using an Improved Multi-Objective Algorithm
,”
Chem. Eng. J.
,
458
, p.
141420
.10.1016/j.cej.2023.141420
21.
Bae
,
J. J.
,
Lim
,
S. C.
,
Han
,
G. H.
,
Jo
,
Y. W.
,
Doung
,
D. L.
,
Kim
,
E. S.
,
Chae
,
S. J.
,
Huy
,
T. Q.
,
Van Luan
,
N.
, and
Lee
,
Y. H.
,
2012
, “
Heat Dissipation of Transparent Graphene Defoggers
,”
Adv. Funct. Mater.
,
22
(
22
), pp.
4819
4826
.10.1002/adfm.201201155
22.
Abbas
,
S.
,
Ramadan
,
Z.
, and
Park
,
C. W.
,
2021
, “
Thermal Performance Analysis of Compact-Type Simulative Battery Module With Paraffin as Phase-Change Material and Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
173
, p.
121269
.10.1016/j.ijheatmasstransfer.2021.121269
You do not currently have access to this content.