Abstract

Global concerns about CO2 levels in the atmosphere, energy security, and the depletion of fossil fuel supply have been the key motivation to develop bio-based fuel resources, which leads to promising and potential strategies of renewable and carbon-neutral biofuels. Among biofuels being strongly developed, 2,5-dimethylfuran (DMF) is a new alternative biofuel candidate since DMF could be synthesized from available and durable lignocellulosic biomass, as well as DMF's physicochemical properties were found to be similar to those of fossil fuels. Therefore, the comprehensive investigation on DMF is very essential before putting DMF into the commercial scale and the engine application. In this current work, the temporal evolutions of laminar flame characteristics including laminar burning velocities, unstretched flame propagation speed, and Schlieren images were critically reviewed based on the comparison of DMF with other fuels. Besides, flame instabilities were also evaluated in detail. Finally, ignition delay times were thoroughly analyzed with the variation of the initial parameters such as temperature, pressure, and equivalent ratio, suggesting that DMF could become the potential fuel for the spark ignition engine. In the future, the experimental studies on the real engines fueled with DMF should be carefully and completely performed to have a comprehensive evaluation of this promising biofuel class.

References

1.
Statistics
,
I. E. A.
,
2014
, “
Key World Energy Statistics
,”
Int. Energy Agency Paris, Fr.
2.
Pachauri
,
R. K.
,
Gomez-Echeverri
,
L.
, and
Riahi
,
K.
,
2014
,
Synthesis Report: Summary for Policy Makers
,
Cambridge University Press
,
Cambridge
.
3.
Nižetić
,
S.
,
Djilali
,
N.
,
Papadopoulos
,
A.
, and
Rodrigues
,
J. J. P. C.
,
2019
, “
Smart Technologies for Promotion of Energy Efficiency, Utilization of Sustainable Resources and Waste Management
,”
J. Clean. Prod.
,
231
, pp.
565
591
. 10.1016/j.jclepro.2019.04.397
4.
Eldeeb
,
M. A.
, and
Akih-Kumgeh
,
B.
,
2018
, “
Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels
,”
Energies
,
11
(
3
), p.
512
. 10.3390/en11030512
5.
Nguyen
,
H. P.
,
Hoang
,
A. T.
,
Nizetic
,
S.
,
Nguyen
,
X. P.
,
Le
,
A. T.
,
Luong
,
C. N.
,
Chu
,
V. D.
, and
Pham
,
V. V.
,
2020
, “
The Electric Propulsion System as a Green Solution for Management Strategy of CO2 Emission in Ocean Shipping: A Comprehensive Review
,”
Int. Trans. Electr. Energy Syst.
, p.
e12580
.
6.
Hoang
,
A. T.
,
Tabatabaei
,
M.
,
Aghbashlo
,
M.
,
Carlucci
,
A. P.
,
Ölçer
,
A. I.
,
Le
,
A. T.
, and
Ghassemi
,
A.
,
2021
, “
Rice Bran Oil-Based Biodiesel as a Promising Renewable Fuel Alternative to Petrodiesel: A Review
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110204
. 10.1016/j.rser.2020.110204
7.
Hoang
,
A. T.
,
2018
, “
Prediction of the Density and Viscosity of Biodiesel and the Influence of Biodiesel Properties on a Diesel Engine Fuel Supply System
,”
J. Mar. Eng. Technol.
10.1080/20464177.2018.1532734
8.
Demirbas
,
A.
,
2017
, “
Tomorrow’s Biofuels: Goals and Hopes
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
39
(
7
), pp.
673
679
. 10.1080/15567036.2016.1252815
9.
Hahn-Hägerdal
,
B.
,
Galbe
,
M.
,
Gorwa-Grauslund
,
M.-F.
,
Lidén
,
G.
, and
Zacchi
,
G.
,
2006
, “
Bio-Ethanol—The Fuel of Tomorrow From the Residues of Today
,”
Trends Biotechnol.
,
24
(
12
), pp.
549
556
. 10.1016/j.tibtech.2006.10.004
10.
Patel
,
A.
,
Agrawal
,
B.
, and
Rawal
,
B. R.
,
2020
, “
Pyrolysis of Biomass for Efficient Extraction of Biofuel
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
42
(
13
), pp.
1649
1661
. 10.1080/15567036.2019.1604875
11.
Nguyen
,
D. C.
,
Anh Tuan
,
H.
,
Quang Vinh
,
T.
,
Hadiyanto
,
H.
,
Wattanavichien
,
K.
, and
Pham
,
V. V.
,
2021
, “
A Review on the Performance, Combustion and Emission Characteristics of SI Engine Fueled With 2,5-Dimethylfuran (DMF) Compared to Ethanol and Gasoline
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
040801
. 10.1115/1.4048228
12.
Hoang
,
A. T.
,
Le
,
A. T.
, and
Pham
,
V. V.
,
2019
, “
A Core Correlation of Spray Characteristics, Deposit Formation, and Combustion of a High-Speed Diesel Engine Fueled With Jatropha Oil and Diesel Fuel
,”
Fuel
,
244
, pp.
159
175
. 10.1016/j.fuel.2019.02.009
13.
Prasad
,
K. S.
,
Rao
,
S. S.
, and
Raju
,
V. R. K.
,
2019
, “
Performance and Emission Characteristics of a DI-CI Engine Operated With n-Butanol/Diesel Blends
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
, pp.
1
12
.
14.
Le
,
A. T.
,
Quoc
,
T. D.
,
Tam
,
T. T.
,
Tuan
,
H. A.
, and
Van Viet
,
P.
,
2020
, “
Performance and Combustion Characteristics of a Retrofitted CNG Engine Under Various Piston-Top Shapes and Compression Ratios
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
10.1080/15567036.2019.1685611
15.
Hoang
,
A. T.
,
Nižetić
,
S.
, and
Ölçer
,
A. I.
,
2020
, “
2,5-Dimethylfuran (DMF) as a Promising Biofuel for the Spark Ignition Engine Application: A Comparative Analysis and Review
,”
Fuel.
16.
Sundaram
,
M.
,
Balan
,
K. N.
,
Arunkumar
,
T.
,
Ganesan
,
S.
, and
Rameshbabu
,
A.
,
2019
, “
Emission Study on the Outcome of DMC on Neem Bio-Diesel-Ignited Diesel Engine
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
, pp.
1
10
. 10.1080/15567036.2019.1691683
17.
Prabakaran
,
B.
,
Vijayabalan
,
P.
, and
Balachandar
,
M.
,
2019
, “
An Assessment of Diesel Ethanol Blend Fueled Diesel Engine Characteristics Using Butanol as Cosolvent for Optimum Operating Parameters
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
10.1080/15567036.2019.1679919
18.
Varol
,
Y.
,
Öner
,
C.
,
Öztop
,
H. F.
, and
Altun
,
Ş
,
2014
, “
Comparison of Methanol, Ethanol, or n-Butanol Blending With Unleaded Gasoline on Exhaust Emissions of an SI Engine
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
36
(
9
), pp.
938
948
. 10.1080/15567036.2011.572141
19.
Rodríguez-Antón
,
L. M.
,
Gutíerrez-Martín
,
F.
, and
Doce
,
Y.
,
2016
, “
Physical Properties of Gasoline, Isobutanol and ETBE Binary Blends in Comparison With Gasoline Ethanol Blends
,”
Fuel
,
166
, pp.
73
78
. 10.1016/j.fuel.2015.10.106
20.
Ullah
,
K.
,
Sharma
,
V. K.
,
Ahmad
,
M.
,
Lv
,
P.
,
Krahl
,
J.
, and
Wang
,
Z.
,
2018
, “
The Insight Views of Advanced Technologies and Its Application in Bio-Origin Fuel Synthesis From Lignocellulose Biomasses Waste, a Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3992
4008
. 10.1016/j.rser.2017.10.074
21.
Saha
,
B.
, and
Abu-Omar
,
M. M.
,
2015
, “
Current Technologies, Economics, and Perspectives for 2, 5-Dimethylfuran Production From Biomass-Derived Intermediates
,”
ChemSusChem
,
8
(
7
), pp.
1133
1142
. 10.1002/cssc.201403329
22.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2013
, “
Detailed Physical Properties Prediction of Pure Methyl Esters for Biodiesel Combustion Modeling
,”
Appl. Energy
,
102
, pp.
647
656
. 10.1016/j.apenergy.2012.08.009
23.
Hoang
,
A. T.
, and
Nguyen
,
D. C.
,
2018
, “
Properties of DMF-Fossil Gasoline RON95 Blends in the Consideration as the Alternative Fuel
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
,
8
(
6
), pp.
2555
2560
. 10.18517/ijaseit.8.6.7214
24.
Dutta
,
S.
,
2012
, “
Deoxygenation of Biomass-Derived Feedstocks: Hurdles and Opportunities
,”
ChemSusChem
,
5
(
11
), pp.
2125
2127
. 10.1002/cssc.201200596
25.
Hu
,
L.
,
Jiang
,
Y.
,
Xu
,
J.
,
He
,
A.
,
Wu
,
Z.
, and
Xu
,
J.
,
2020
, “Chemocatalytic Pathways for High-Efficiency Production of 2, 5-Dimethylfuran From Biomass-Derived 5-Hydroxymethylfurfural,”
Biomass, Biofuels, Biochemicals
,
Elsevier
,
New York
, pp.
377
394
.
26.
Hoang
,
A. T.
,
Tran
,
Q. V.
,
Al-Tawaha
,
A. R. M. S.
,
Pham
,
V. V.
, and
Nguyen
,
X. P.
,
2019
, “
Comparative Analysis on Performance and Emission Characteristics of an In-Vietnam Popular 4-Stroke Motorcycle Engine Running on Biogasoline and Mineral Gasoline
,”
Renew. Energy Focus
,
28
, pp.
47
55
. 10.1016/j.ref.2018.11.001
27.
Wang
,
H.
,
Zhu
,
C.
,
Li
,
D.
,
Liu
,
Q.
,
Tan
,
J.
,
Wang
,
C.
,
Cai
,
C.
, and
Ma
,
L.
,
2019
, “
Recent Advances in Catalytic Conversion of Biomass to 5-Hydroxymethylfurfural and 2, 5-Dimethylfuran
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
227
247
. 10.1016/j.rser.2018.12.010
28.
Qian
,
Y.
,
Zhu
,
L.
,
Wang
,
Y.
, and
Lu
,
X.
,
2015
, “
Recent Progress in the Development of Biofuel 2, 5-Dimethylfuran
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
633
646
. 10.1016/j.rser.2014.08.085
29.
Zhong
,
S.
,
Daniel
,
R.
,
Xu
,
H.
,
Zhang
,
J.
,
Turner
,
D.
,
Wyszynski
,
M. L.
, and
Richards
,
P.
,
2010
, “
Combustion and Emissions of 2, 5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine
,”
Energy Fuels
,
24
(
5
), pp.
2891
2899
. 10.1021/ef901575a
30.
Cheng
,
Z.
,
Xing
,
L.
,
Zeng
,
M.
,
Dong
,
W.
,
Zhang
,
F.
,
Qi
,
F.
, and
Li
,
Y.
,
2014
, “
Experimental and Kinetic Modeling Study of 2, 5-Dimethylfuran Pyrolysis at Various Pressures
,”
Combust. Flame
,
161
(
10
), pp.
2496
2511
. 10.1016/j.combustflame.2014.03.022
31.
Sirjean
,
B.
,
Fournet
,
R.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
,
Wang
,
W.
, and
Oehlschlaeger
,
M. A.
,
2013
, “
Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2, 5-Dimethylfuran
,”
J. Phys. Chem. A
,
117
(
7
), pp.
1371
1392
. 10.1021/jp308901q
32.
Somers
,
K. P.
,
Simmie
,
J. M.
,
Gillespie
,
F.
,
Conroy
,
C.
,
Black
,
G.
,
Metcalfe
,
W. K.
,
Battin-Leclerc
,
F.
,
Dirrenberger
,
P.
,
Herbinet
,
O.
,
Glaude
,
P.-A.
,
Dagaut
,
P.
,
Togbé
,
C.
,
Yasunaga
,
K.
,
Fernandes
,
R. X.
,
Lee
,
C.
,
Tripathi
,
R.
, and
Curran
,
H. J.
,
2013
, “
A Comprehensive Experimental and Detailed Chemical Kinetic Modelling Study of 2, 5-Dimethylfuran Pyrolysis and Oxidation
,”
Combust. Flame
,
160
(
11
), pp.
2291
2318
. 10.1016/j.combustflame.2013.06.007
33.
Rothamer
,
D. A.
, and
Jennings
,
J. H.
,
2012
, “
Study of the Knocking Propensity of 2, 5-Dimethylfuran–Gasoline and Ethanol–Gasoline Blends
,”
Fuel
,
98
, pp.
203
212
. 10.1016/j.fuel.2012.03.049
34.
Daniel
,
R.
,
Xu
,
H.
,
Wang
,
C.
,
Richardson
,
D.
, and
Shuai
,
S.
,
2012
, “
Combustion Performance of 2, 5-Dimethylfuran Blends Using Dual-Injection Compared to Direct-Injection in a SI Engine
,”
Appl. Energy
,
98
, pp.
59
68
. 10.1016/j.apenergy.2012.02.073
35.
Lifshitz
,
A.
,
Tamburu
,
C.
, and
Shashua
,
R.
,
1998
, “
Thermal Decomposition of 2, 5-Dimethylfuran. Experimental Results and Computer Modeling
,”
J. Phys. Chem. A
,
102
(
52
), pp.
10655
10670
. 10.1021/jp982772b
36.
Togbé
,
C.
,
Tran
,
L.-S.
,
Liu
,
D.
,
Felsmann
,
D.
,
Oßwald
,
P.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part III: 2, 5-Dimethylfuran
,”
Combust. Flame
,
161
(
3
), pp.
780
797
. 10.1016/j.combustflame.2013.05.026
37.
Somers
,
K. P.
,
Simmie
J.M.
,
Gillespie
F.
,
Burke
U.
,
Connolly
J.
,
Metcalfe
W.K.
,
Battin-Leclerc
F.
,
Dirrenberger
P.
,
Herbinet
O.
,
Glaude
P.-A.
,
Curran
H.J.
,
2013
, “
A High Temperature and Atmospheric Pressure Experimental and Detailed Chemical Kinetic Modelling Study of 2-Methyl Furan Oxidation
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
225
232
. 10.1016/j.proci.2012.06.113
38.
Sahu
,
A. B.
,
Markendaya
,
S.
,
Badhuk
,
P.
, and
Ravikrishna
,
R. V.
,
2020
, “
Experiments and Kinetic Modelling of Diffusion Flame Extinction of 2-Methylfuran, 2, 5-Dimethylfuran and Binary Mixtures with Isooctane
,”
Energy Fuels
,
34
(
2
), pp.
2293
2303
. 10.1021/acs.energyfuels.9b03375
39.
Wu
,
X.
,
Huang
,
Z.
,
Jin
,
C.
,
Wang
,
X.
,
Zheng
,
B.
,
Zhang
,
Y.
, and
Wei
,
L.
,
2009
, “
Measurements of Laminar Burning Velocities and Markstein Lengths of 2, 5-Dimethylfuran−air−Diluent Premixed Flames
,”
Energy Fuels
,
23
(
9
), pp.
4355
4362
. 10.1021/ef900454v
40.
Tian
,
G.
,
Daniel
,
R.
,
Li
,
H.
,
Xu
,
H.
,
Shuai
,
S.
, and
Richards
,
P.
,
2010
, “
Laminar Burning Velocities of 2, 5-Dimethylfuran Compared With Ethanol and Gasoline
,”
Energy Fuels
,
24
(
7
), pp.
3898
3905
. 10.1021/ef100452c
41.
Wu
,
X.
,
Huang
,
Z.
,
Jin
,
C.
,
Wang
,
X.
, and
Wei
,
L.
,
2010
, “
Laminar Burning Velocities and Markstein Lengths of 2, 5-Dimethylfuran-Air Premixed Flames at Elevated Temperatures
,”
Combust. Sci. Technol.
,
183
(
3
), pp.
220
237
. 10.1080/00102202.2010.516037
42.
Li
,
Q.
,
Fu
,
J.
,
Wu
,
X.
,
Tang
,
C.
, and
Huang
,
Z.
,
2012
, “
Laminar Flame Speeds of DMF/Iso-Octane-Air-N2/CO2 Mixtures
,”
Energy Fuels
,
26
(
2
), pp.
917
925
. 10.1021/ef201638w
43.
Wu
,
X.
,
Li
,
Q.
,
Fu
,
J.
,
Tang
,
C.
,
Huang
,
Z.
,
Daniel
,
R.
,
Tian
,
G.
, and
Xu
,
H.
,
2012
, “
Laminar Burning Characteristics of 2, 5-Dimethylfuran and Iso-Octane Blend at Elevated Temperatures and Pressures
,”
Fuel
,
95
, pp.
234
240
. 10.1016/j.fuel.2011.11.057
44.
Bhattacharya
,
A.
, and
Datta
,
A.
,
2019
, “
Effects of Blending 2, 5-Dimethylfuran on the Laminar Burning Velocity and Ignition Delay Time of Isooctane/Air Mixture
,”
Combust. Theory Model.
,
23
(
1
), pp.
105
126
. 10.1080/13647830.2018.1492153
45.
Tanaka
,
K.
,
Isobe
,
N.
,
Sato
,
K.
,
Okada
,
R.
,
Okada
,
H.
,
Fujisawa
,
Y.
, and
Konno
,
M.
,
2016
, “
Ignition Characteristics of 2, 5-Dimethylfuran Compared With Gasoline and Ethanol
,”
SAE Int. J. Engines
,
9
(
1
), pp.
39
46
. 10.4271/2015-01-1806
46.
Xu
,
N.
,
Wu
,
Y.
,
Tang
,
C.
,
Zhang
,
P.
,
He
,
X.
,
Wang
,
Z.
, and
Huang
,
Z.
,
2016
, “
Experimental Study of 2, 5-Dimethylfuran and 2-Methylfuran in a Rapid Compression Machine: Comparison of the Ignition Delay Times and Reactivity at Low to Intermediate Temperature
,”
Combust. Flame
,
168
, pp.
216
227
. 10.1016/j.combustflame.2016.03.016
47.
Eldeeb
,
M. A.
, and
Akih-Kumgeh
,
B.
,
2015
, “
High-Temperature Auto-Ignition Studies of 2, 5-Dimethylfuran, 2-Ethyl Furan, and Iso-Octane
,”
9th US National Combustion Meeting
,
Cincinnati, OH
,
May 17–20
.
48.
Eldeeb
,
M. A.
, and
Akih-Kumgeh
,
B.
,
2015
, “
Investigation of 2, 5-Dimethyl Furan and Iso-Octane Ignition
,”
Combust. Flame
,
162
(
6
), pp.
2454
2465
. 10.1016/j.combustflame.2015.02.013
49.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
. 10.1115/1.4030493
50.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2019
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
020801
. https://doi.org/10.1115/1.4041288
51.
Gao
,
Z.
,
Hu
,
E.
,
Xu
,
Z.
,
Yin
,
G.
, and
Huang
,
Z.
,
2019
, “
Effect of 2, 5-Dimethylfuran Addition on Ignition Delay Times of n-Heptane at High Temperatures
,”
Front. Energy
,
13
(
3
), pp.
464
473
. 10.1007/s11708-019-0609-z
52.
Tian
,
Z.
,
Li
,
J.
, and
Yan
,
Y.
,
2019
, “
A Reduced Mechanism for 2, 5-Dimetylfuran With Assembled Mechanism Reduction Methods
,”
Fuel
,
250
, pp.
52
64
. 10.1016/j.fuel.2019.03.154
53.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
54.
Xu
,
N.
,
Gong
,
J.
, and
Huang
,
Z.
,
2016
, “
Review on the Production Methods and Fundamental Combustion Characteristics of Furan Derivatives
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1189
1211
. 10.1016/j.rser.2015.10.118
55.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
. 10.1115/1.4028363
56.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2016
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
. 10.1115/1.4031511
57.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2019
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
. https://doi.org/10.1115/1.4041289
58.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vien
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flame
,
168
, pp.
20
31
. 10.1016/j.combustflame.2016.03.018
59.
Nilsson
,
E. J. K.
, and
Konnov
,
A. A.
,
2013
, “Flame Studies of Oxygenates,”
Cleaner Combustion
,
Springer
,
New York
, pp.
231
280
.
60.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
. 10.1016/j.fuel.2016.11.042
61.
Wang
,
Z.
,
Lu
,
Z.
,
Yelishala
,
S. C.
,
Metghalchi
,
H.
, and
Levendis
,
Y. A.
,
2020
, “
Laminar Burning Speeds and Flame Instabilities of Isobutane Carbon Dioxide Air Mixtures at High Pressures and Temperatures
,”
Fuel
,
268
, p.
117410
. 10.1016/j.fuel.2020.117410
62.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
. 10.1115/1.4042720
63.
Wang
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
,
Metghalchi
,
H.
, and
Levendis
,
Y. A.
,
2019
, “
Effects of Carbon Dioxide on Laminar Burning Speed and Flame Instability of Methane/Air and Propane/Air Mixtures: A Literature Review
,”
Energy Fuels
,
33
(
10
), pp.
9403
9418
. 10.1021/acs.energyfuels.9b02346
64.
Wu
,
X.
,
Huang
,
Z.
,
Wang
,
X.
,
Jin
,
C.
,
Tang
,
C.
,
Wei
,
L.
, and
Law
,
C. K.
,
2011
, “
Laminar Burning Velocities and Flame Instabilities of 2, 5-Dimethylfuran–Air Mixtures at Elevated Pressures
,”
Combust. Flame
,
158
(
3
), pp.
539
546
. 10.1016/j.combustflame.2010.10.006
65.
Ma
,
X.
,
Jiang
,
C.
,
Xu
,
H.
,
Ding
,
H.
, and
Shuai
,
S.
,
2014
, “
Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels
,”
Fuel
,
116
, pp.
281
291
. 10.1016/j.fuel.2013.08.018
66.
Ma
,
X.
,
Jiang
,
C.
,
Xu
,
H.
,
Shuai
,
S.
, and
Ding
,
H.
,
2013
, “
Laminar Burning Characteristics of 2-Methylfuran Compared With 2, 5-Dimethylfuran and Isooctane
,”
Energy Fuels
,
27
(
10
), pp.
6212
6221
. 10.1021/ef401181g
67.
Galmiche
,
B.
,
Halter
,
F.
, and
Foucher
,
F.
,
2012
, “
Effects of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures
,”
Combust. Flame
,
159
(
11
), pp.
3286
3299
. 10.1016/j.combustflame.2012.06.008
68.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
,
Allehaibi
,
M. O.
, and
Metghalchi
,
H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
. 10.1016/j.fuel.2017.08.009
69.
Han
,
X.
,
Wang
,
Z.
,
Wang
,
S.
,
Whiddon
,
R.
,
He
,
Y.
,
Lv
,
Y.
, and
Konnov
,
A. A.
,
2019
, “
Parametrization of the Temperature Dependence of Laminar Burning Velocity for Methane and Ethane Flames
,”
Fuel
,
239
, pp.
1028
1037
. 10.1016/j.fuel.2018.11.118
70.
Konnov
,
A. A.
,
Mohammad
,
A.
,
Kishore
,
V. R.
,
Il Kim
,
N.
,
Prathap
,
C.
, and
Kumar
,
S.
,
2018
, “
A Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel+Air Mixtures
,”
Prog. Energy Combust. Sci.
,
68
, pp.
197
267
. 10.1016/j.pecs.2018.05.003
71.
Chong
,
C. T.
, and
Hochgreb
,
S.
,
2011
, “
Measurements of Laminar Flame Speeds of Liquid Fuels: Jet-A1, Diesel, Palm Methyl Esters and Blends Using Particle Imaging Velocimetry (PIV)
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
979
986
. 10.1016/j.proci.2010.05.106
72.
Cao
,
D. N.
,
Hoang
,
A. T.
,
Luu
,
H. Q.
,
Bui
,
V. G.
, and
Tran
,
T. T. H.
,
2020
, “
Effects of Injection Pressure on the NOx and PM Emission Control of Diesel Engine: A Review Under the Aspect of PCCI Combustion Condition
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
10.1080/15567036.2020.1754531
73.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1793
1800
. 10.1016/S0082-0784(00)80581-0
74.
Williams
,
F. A.
,
2018
,
Combustion Theory
,
CRC Press
, Boca Raton, FL.
75.
Ma
,
X.
,
Xu
,
H.
,
Jiang
,
C.
, and
Shuai
,
S.
,
2014
, “
Ultra-High Speed Imaging and OH-LIF Study of DMF and MF Combustion in a DISI Optical Engine
,”
Appl. Energy
,
122
, pp.
247
260
. 10.1016/j.apenergy.2014.01.071
76.
Ma
,
X.
,
Jiang
,
C.
,
Xu
,
H.
, and
Richardson
,
S.
,
2012
, “
In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends
,” SAE Technical Paper 2012-01-1235.
77.
Gillespie
,
F. R.
,
2014
,
An Experimental and Modelling Study of the Combustion of Oxygenated Hydrocarbons
,
National University of Ireland
,
Galway, Ireland
.
78.
Roy
,
S.
,
Zare
,
S.
, and
Askari
,
O.
,
2019
, “
Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022205
. 10.1115/1.4041316
79.
Yin
,
C.
, and
Yan
,
J.
,
2016
, “
Oxy-Fuel Combustion of Pulverized Fuels: Combustion Fundamentals and Modeling
,”
Appl. Energy
,
162
, pp.
742
762
. 10.1016/j.apenergy.2015.10.149
80.
Xie
,
Y.
, and
Li
,
Q.
,
2019
, “
Effect of the Initial Pressures on Evolution of Intrinsically Unstable Hydrogen/Air Premixed Flame Fronts
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
17030
17040
. 10.1016/j.ijhydene.2019.04.220
81.
Jomaas
,
G.
,
Law
,
C. K.
, and
Bechtold
,
J. K.
,
2007
, “
On Transition to Cellularity in Expanding Spherical Flames
,”
J. Fluid Mech.
,
583
, pp.
1
26
. 10.1017/S0022112007005885
82.
Wu
,
F.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2013
, “
An Experimental Investigation on Self-Acceleration of Cellular Spherical Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
937
945
. 10.1016/j.proci.2012.05.068
83.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
. 10.1016/j.pecs.2014.04.004
84.
Law
,
C. K.
,
Jomaas
,
G.
, and
Bechtold
,
J. K.
,
2005
, “
Cellular Instabilities of Expanding Hydrogen/Propane Spherical Flames at Elevated Pressures: Theory and Experiment
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
159
167
. 10.1016/j.proci.2004.08.266
85.
Giannakopoulos
,
G. K.
,
Gatzoulis
,
A.
,
Frouzakis
,
C. E.
,
Matalon
,
M.
, and
Tomboulides
,
A. G.
,
2015
, “
Consistent Definitions of ‘Flame Displacement Speed’ and ‘Markstein Length’ for Premixed Flame Propagation
,”
Combust. Flame
,
162
(
4
), pp.
1249
1264
. 10.1016/j.combustflame.2014.10.015
86.
Tang
,
C.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2014
, “
Progress in Combustion Investigations of Hydrogen Enriched Hydrocarbons
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
195
216
. 10.1016/j.rser.2013.10.005
87.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
. 10.1115/1.4037376
88.
Somers
,
K. P.
,
Simmie
,
J. M.
,
Metcalfe
,
W. K.
, and
Curran
,
H. J.
,
2014
, “
The Pyrolysis of 2-Methylfuran: A Quantum Chemical, Statistical Rate Theory and Kinetic Modelling Study
,”
Phys. Chem. Chem. Phys.
,
16
(
11
), pp.
5349
5367
. 10.1039/c3cp54915a
89.
Liu
,
D.
,
Togbé
,
C.
,
Tran
,
L.-S.
,
Felsmann
,
D.
,
Oßwald
,
P.
,
Nau
,
P.
,
Koppmann
,
J.
,
Lackner
,
A.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part I: Furan
,”
Combust. Flame
,
161
(
3
), pp.
748
765
. 10.1016/j.combustflame.2013.05.028
90.
Eldeeb
,
M. A.
, and
Akih-Kumgeh
,
B.
,
2014
, “
Reactivity Trends in Furan and Alkyl Furan Combustion
,”
Energy Fuels
,
28
(
10
), pp.
6618
6626
. 10.1021/ef501181z
91.
Di
,
H.
,
He
,
X.
,
Zhang
,
P.
,
Wang
,
Z.
,
Wooldridge
,
M. S.
,
Law
,
C. K.
,
Wang
,
C.
,
Shuai
,
S.
, and
Wang
,
J.
,
2014
, “
Effects of Buffer Gas Composition on Low Temperature Ignition of Iso-Octane and n-Heptane
,”
Combust. Flame
,
161
(
10
), pp.
2531
2538
. 10.1016/j.combustflame.2014.04.014
92.
Mansfield
,
A. B.
,
Wooldridge
,
M. S.
,
Di
,
H.
, and
He
,
X.
,
2015
, “
Low-Temperature Ignition Behavior of Iso-Octane
,”
Fuel
,
139
, pp.
79
86
. 10.1016/j.fuel.2014.08.019
93.
AlAbbad
,
M.
,
Javed
,
T.
,
Khaled
,
F.
,
Badra
,
J.
, and
Farooq
,
A.
,
2017
, “
Ignition Delay Time Measurements of Primary Reference Fuel Blends
,”
Combust. Flame
,
178
, pp.
205
216
. 10.1016/j.combustflame.2016.12.027
94.
Yuan
,
W.
,
Li
,
Y.
,
Dagaut
,
P.
,
Yang
,
J.
, and
Qi
,
F.
,
2015
, “
Investigation on the Pyrolysis and Oxidation of Toluene Over a Wide Range Conditions. I. Flow Reactor Pyrolysis and Jet Stirred Reactor Oxidation
,”
Combust. Flame
,
162
(
1
), pp.
3
21
. 10.1016/j.combustflame.2014.07.009
95.
Murakami
,
Y.
,
Oguchi
,
T.
,
Hashimoto
,
K.
, and
Nosaka
,
Y.
,
2007
, “
Theoretical Study of the Benzyl+ O2 Reaction: Kinetics, Mechanism, and Product Branching Ratios
,”
J. Phys. Chem. A
,
111
(
50
), pp.
13200
13208
. 10.1021/jp075369q
96.
Metcalfe
,
W. K.
,
Dooley
,
S.
, and
Dryer
,
F. L.
,
2011
, “
Comprehensive Detailed Chemical Kinetic Modeling Study of Toluene Oxidation
,”
Energy Fuels
,
25
(
11
), pp.
4915
4936
. 10.1021/ef200900q
97.
Yuan
,
W.
,
Li
,
Y.
,
Pengloan
,
G.
,
Togbé
,
C.
,
Dagaut
,
P.
, and
Qi
,
F.
,
2016
, “
A Comprehensive Experimental and Kinetic Modeling Study of Ethylbenzene Combustion
,”
Combust. Flame
,
166
, pp.
255
265
. 10.1016/j.combustflame.2016.01.026
98.
Roubaud
,
A.
,
Minetti
,
R.
, and
Sochet
,
L. R.
,
2000
, “
Oxidation and Combustion of Low Alkylbenzenes at High Pressure: Comparative Reactivity and Auto-Ignition
,”
Combust. Flame
,
121
(
3
), pp.
535
541
. 10.1016/S0010-2180(99)00169-8
99.
Mittal
,
G.
,
Chaos
,
M.
,
Sung
,
C.-J.
, and
Dryer
,
F. L.
,
2008
, “
Dimethyl Ether Autoignition in a Rapid Compression Machine: Experiments and Chemical Kinetic Modeling
,”
Fuel Process. Technol.
,
89
(
12
), pp.
1244
1254
. 10.1016/j.fuproc.2008.05.021
100.
Weber
,
B. W.
,
Kumar
,
K.
,
Zhang
,
Y.
, and
Sung
,
C.-J.
,
2011
, “
Autoignition of n-Butanol at Elevated Pressure and Low-to-Intermediate Temperature
,”
Combust. Flame
,
158
(
5
), pp.
809
819
. 10.1016/j.combustflame.2011.02.005
101.
Mittal
,
G.
, and
Sung
,
C.-J.
,
2007
, “
Autoignition of Toluene and Benzene at Elevated Pressures in a Rapid Compression Machine
,”
Combust. Flame
,
150
(
4
), pp.
355
368
. 10.1016/j.combustflame.2007.04.014
102.
Sirjean
,
B.
, and
Fournet
,
R.
,
2013
, “
Unimolecular Decomposition of 2, 5-Dimethylfuran: A Theoretical Chemical Kinetic Study
,”
Phys. Chem. Chem. Phys.
,
15
(
2
), pp.
596
611
. 10.1039/C2CP41927K
103.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1–2
), pp.
149
177
. 10.1016/S0010-2180(97)00282-4
104.
Weber
,
B. W.
, and
Sung
,
C.-J.
,
2013
, “
Comparative Autoignition Trends in Butanol Isomers at Elevated Pressure
,”
Energy Fuels
,
27
(
3
), pp.
1688
1698
. 10.1021/ef302195c
You do not currently have access to this content.