Abstract

Immersion of fins in latent heat thermal energy storage (LHTES) systems has been used as an influential approach to remedy the poor thermal conductivity of phase-change materials (PCMs). This paper numerically investigates heat transfer and phase-change improvement by means of longitudinal fins in a double pipe thermal energy storage unit. The main aim of this study is to investigate the effect of fin orientation on the performance of the thermal storage unit. Six configurations of different fin numbers (2, 4, and 8 fins) and orientations (π/2, π/4, and π/8) are tested. For simulations, a two-dimensional mathematical model incorporating the enthalpy-porosity method and finite volume techniques are established and solved by ansys-fluent. The numerical predictions are successfully validated by comparison with experimental and numerical data from the literature. Heat transfer characteristics and melting process are analyzed through streamlines, isotherms, mean temperature, heat flux (HF), and heat transfer coefficient (HTC) as well as transient melting front position and liquid fractions. Results show that orientation of fins has a significant impact on the charging time for two cases (2 and 4 fins) whereas no significant reduction in charging time was obtained for the case of 8 fins. In case of utilizing 2 fins, a fin orientation of 0 deg (vertical fins) shortens the charging time by up to 2.5 folds compared with the horizontal fins (90 deg). These results could help designing efficient latent thermal energy storage units.

References

1.
Mavrigiannaki
,
A.
, and
Ampatzi
,
E.
,
2016
, “
Latent Heat Storage in Building Elements: A Systematic Review on Properties and Contextual Performance Factors
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
52
866
.
2.
ELSihy
,
E. S.
,
Wang
,
X.
,
Xu
,
C.
, and
Du
,
X.
,
2021
, “
Investigation on Simultaneous Charging and Discharging Process of Water Thermocline Storage Tank Employed in Combined Heat and Power Units
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032001
.
3.
Kumar
,
N.
,
Ness
,
R. V.
,
Chavez
,
R.
, Jr.
,
Banerjee
,
D.
,
Muley
,
A.
, and
Stoia
,
M.
,
2021
, “
Experimental Analysis of Salt Hydrate Latent Heat Thermal Energy Storage System With Porous Aluminum Fabric and Salt Hydrate as Phase Change Material With Enhanced Stability and Supercooling
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042001
.
4.
Dandotiya
,
D.
, and
Banker
,
N. D.
,
2021
, “
Energy Efficiency Improvement of a Refrigerator Integrated With Phase Change Material-Based Condenser
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082105
.
5.
Seddegh
,
S.
,
Tehrani
,
S. S. M.
,
Wang
,
X.
,
Cao
,
F.
, and
Taylor
,
R. A.
,
2018
, “
Comparison of Heat Transfer Between Cylindrical and Conical Vertical Shell-and-Tube Latent Heat Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
130
, pp.
1349
1362
.
6.
Irbai
,
A. S. I.
, and
Najjar
,
Y. S. H.
,
2019
, “
Enhancement of the Melting Process in the Thermal Energy Storage System by Using Novel Geometry
,”
Numer. Heat Transfer, Part A
,
76
(
12
), pp.
1
20
.
7.
Mehryan
,
S. A. M.
,
Ayoubi-Ayoubloo
,
K.
,
Shahabadi
,
M.
,
Ghalambaz
,
M.
,
Talebizadehsardari
,
P.
, and
Chamkha
,
A.
,
2020
, “
Conjugate Phase Change Heat Transfer in an Inclined Compound Cavity Partially Filled With a Porous Medium: A Deformed Mesh Approach
,”
Transp. Porous Media
,
132
(
3
), pp.
657
681
.
8.
Xu
,
Y.
,
Li
,
M. J.
,
Zheng
,
Z. J.
, and
Xue
,
X. D.
,
2018
, “
Melting Performance Enhancement of Phase Change Material by a Limited Amount of Metal Foam: Configurational Optimization and Economic Assessment
,”
Appl. Energy
,
212
, pp.
868
880
.
9.
Sundarram
,
S. S.
, and
Li
,
W.
,
2014
, “
The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
147
154
.
10.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2018
, “
Multiple-Segment Metal Foam Application in the Shell-and-Tube PCM Thermal Energy Storage System
,”
J. Energy Storage
,
20
, pp.
529
541
.
11.
Yang
,
X.
,
Lu
,
Z.
,
Bai
,
Q.
,
Zhang
,
Q.
,
Jin
,
L.
, and
Yan
,
J.
,
2017
, “
Thermal Performance of a Shell and Tube Latent Heat Thermal Energy Storage Unit: Role of Annular Fins
,”
Appl. Energy
,
202
, pp.
558
570
.
12.
Borhani
,
S. M.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2019
, “
Investigation of Phase Change in a Spiral-Fin Heat Exchanger
,”
Appl. Mathm. Model.
,
67
, pp.
297
314
.
13.
Alizadeh
,
M.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2019
, “
Investigating the Effects of Hybrid Nanoparticles on Solid-Liquid Phase Change Process in a Y-Shaped Fin-Assisted LHTESS by Means of FEM
,”
J. Mol. Liq.
,
287
, pp.
110931
.
14.
Alizadeh
,
M.
,
Hosseinzadeh
,
K.
,
Shahavi
,
M. H.
, and
Ganji
,
D. D.
,
2019
, “
Solidification Acceleration in a Triplex-Tube Latent Heat Thermal Energy Storage System Using V-Shaped Fin and Nano-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
163
, pp.
114436
.
15.
Ren
,
Q.
,
Xu
,
H.
, and
Luo
,
Z.
,
2019
, “
PCM Charging Process Accelerated With Combination of Optimized Triangle Fins and Nanoparticles
,”
Int. J. Therm. Sci.
,
140
, pp.
466
479
.
16.
Hosseinzadeh
,
K.
,
Alizadeh
,
M.
, and
Ganji
,
D. D.
,
2019
, “
Solidification Process of Hybrid Nano-Enhanced Phase Change Material in a LHTESS With Tree-Like Branching Fin in the Presence of Thermal Radiation
,”
J. Mol. Liq.
,
275
, pp.
909
925
.
17.
Pizzolato
,
A.
,
Sharma
,
A.
,
Maute
,
K.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Design of Effective Fins for Fast PCM Melting and Solidification in Shell-and Tube Latent Heat Thermal Energy Storage Through Topology Optimization
,”
Appl. Energy
,
208
, pp.
210
227
.
18.
Nóbrega
,
C. R. E. S.
,
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2019
, “
Correlations for Predicting the Performance of Axial Finned Tubes Submersed in PCM
,”
J. Energy Storage
,
26
, pp.
100973
.
19.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2015
, “
Thermal Performance Enhancement of Shell and Tube Latent Heat Storage Unit Using Longitudinal Fins
,”
Appl. Therm. Eng.
,
75
, pp.
1084
1092
.
20.
Huang
,
Y.
,
Sun
,
Q.
,
, Yao
,
F.
, and
Zhang
,
C.
,
2020
, “
Performance Optimization of a Finned Shell and Tube Ice Storage Unit
,”
Appl. Therm. Eng.
,
167
, pp.
114788
.
21.
Nóbrega
,
C. R. E. S.
,
Ismail
,
K. A. R.
, and
Lino
,
F. A. M.
,
2020
, “
Solidification Around Axial Finned Tube Submersed in PCM: Modeling and Experiments
,”
J. Energy Storage
,
29
, pp.
101438
.
22.
Sheikholeslami
,
M.
,
Haq
,
R.-u.
,
Shafee
,
A.
,
Li
,
Z.
,
Elaraki
,
Y.
, and
Tlili
,
G. I.
,
2019
, “
Heat Transfer Simulation of Heat Storage Unit With Nanoparticles and Fins Through a Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
135
, pp.
470
478
.
23.
Sheikholeslami
,
M.
,
2018
, “
Numerical Modeling of Nano Enhanced PCM Solidification in an Enclosure With Metallic fin
,”
J. Mol. Liq.
,
259
, pp.
424
438
.
24.
Patel
,
J. R.
, and
Rathod
,
M. K.
,
2019
, “
Thermal Performance Enhancement of Melting and Solidification Process of Phase-Change Material in Triplex Tube Heat Exchanger Using Longitudinal Fins
,”
Heat Transfer—Asian Res.
,
48
(
2
), pp.
483
501
.
25.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Abdulateef
,
J.
,
Sopian
,
K.
, and
Al-Abidi
,
A. A.
,
2018
, “
Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique
,”
Heat Transfer Eng.
,
39
(
12
), pp.
1067
1080
.
26.
Khan
,
L. A.
, and
Khan
,
M. M.
,
2020
, “
Role of Orientation of Fins in Performance Enhancement of a Latent Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
175
, p.
115408
.
27.
Muhammad
,
M. D.
,
Badr
,
O.
, and
Yeung
,
H.
,
2015
, “
Validation of a CFD Melting and Solidification Model for Phase Change in Vertical Cylinders
,”
Numer. Heat Transfer, Part A
,
68
(
5
), pp.
501
511
.
28.
Yaws
,
C. L.
,
1999
,
Chemical Properties Handbook
,
McGraw-Hill Education
,
New York
.
29.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection Diffusion Mushy Region Phase Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
30.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Num. Heat Transfer
,
13
(
3
), pp.
297
318
.
31.
Ye
,
W. B.
,
Zhu
,
D. S.
, and
Wang
,
N.
,
2011
, “
Numerical Simulation on Phase-Change Thermal Storage / Release in a Plate-Fin Unit
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3871
3884
.
32.
Mat
,
S.
,
Al-Abidi
,
A. A.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Enhance Heat Transfer for PCM Melting in Triplex Tube With Internal-External Fins
,”
Energy Convers. Manage.
,
74
, pp.
223
236
.
33.
Darzi
,
A. R.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2012
, “
Numerical Study of Melting Inside Concentric and Eccentric Horizontal Annulus
,”
Appl. Math. Model.
,
36
(
9
), pp.
4080
4086
.
34.
Biwole
,
P. H.
,
Groulx
,
D.
,
Souayfane
,
F.
, and
Chiu
,
T.
,
2018
, “
Influence of Fin Size and Distribution on Solid-Liquid Phase Change in a Rectangular Enclosure
,”
Int. J. Therm. Sci.
,
124
, pp.
433
446
.
35.
Hong
,
Y.
,
Ye
,
W. B.
,
Huang
,
S. M.
,
Yang
,
M.
, and
Du
,
J.
,
2018
, “
Thermal Storage Characteristics for Rectangular Cavity With Partially Active Walls
,”
Int. J. Heat Mass Transfer
,
126
, pp.
683
702
.
36.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
.
37.
Medrano
,
M.
,
Yilmaz
,
M. O.
,
Nogués
,
M.
,
Martorell
,
I.
,
Roca
,
J.
, and
Cabeza
,
L. F.
,
2009
, “
Experimental Evaluation of Commercial Heat Exchangers for use as PCM Thermal Storage Systems
,”
Appl. Energy
,
86
(
10
), pp.
2047
2055
.
38.
Joulin
,
A.
,
Younsi
,
Z.
,
Zalewski
,
L.
,
Lassue
,
S.
,
Rousse
,
D. R.
, and
Cavrot
,
J. P.
,
2011
, “
Experimental and Numerical Investigation of a Phase Change Material: Thermal-Energy Storage and Release
,”
Appl. Energy
,
88
(
7
), pp.
2454
2462
.
You do not currently have access to this content.