Abstract

This study numerically investigates heat convection and entropy generation in a hybrid nanofluid (Al2O3–Cu–water) flowing around a cylinder embedded in porous media. An artificial neural network is used for predictive analysis, in which numerical data are generated to train an intelligence algorithm and to optimize the prediction errors. Results show that the heat transfer of the system increases when the Reynolds number, permeability parameter, or volume fraction of nanoparticles increases. However, the functional forms of these dependencies are complex. In particular, increasing the nanoparticle concentration is found to have a nonmonotonic effect on entropy generation. The simulated and predicted data are subjected to particle swarm optimization to produce correlations for the shear stress and Nusselt number. This study demonstrates the capability of artificial intelligence algorithms in predicting the thermohydraulics and thermodynamics of thermal and solutal systems.

References

1.
Vafai
,
K.
,
2015
,
Handbook of Porous Media
,
CRC Press
,
Boca Raton, FL
.
2.
Torabi
,
M.
,
Dickson
,
C.
, and
Karimi
,
N.
,
2016
, “
Theoretical Investigation of Entropy Generation and Heat Transfer by Forced Convection of Copper-Water Nanofluid in a Porous Channel-Local Thermal Non-Equilibrium and Partial Filling Effects
,”
Powder Technol.
,
301
, pp.
234
254
. 10.1016/j.powtec.2016.06.017
3.
Hunt
,
G.
,
Torabi
,
M.
,
Govone
,
L.
,
Karimi
,
N.
, and
Mehdizadeh
,
A.
,
2018
, “
Two-Dimensional Heat and Mass Transfer and Thermodynamic Analyses of Porous Microreactors With Soret and Thermal Radiation Effects—An Analytical Approach
,”
Chem. Eng. Process.
,
126
, pp.
190
205
. 10.1016/j.cep.2018.02.025
4.
Govone
,
L.
,
Torabi
,
M.
,
Wang
,
L.
, and
Karimi
,
N.
,
2019
, “
Effects of Nanofluid and Radiative Heat Transfer on the Double-Diffusive Forced Convection in Microreactors
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
45
59
. 10.1007/s10973-018-7027-z
5.
Guthrie
,
D. G.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2019
, “
Energetic and Entropic Analyses of Double-Diffusive, Forced Convection Heat and Mass Transfer in Microreactors Assisted With Nanofluid
,”
J. Therm. Anal. Calorim.
,
137
(
2
), pp.
637
658
. 10.1007/s10973-018-7959-3
6.
Ting
,
T. W.
,
Hung
,
Y. M.
, and
Guo
,
N.
,
2015
, “
Entropy Generation of Viscous Dissipative Nanofluid Convection in Asymmetrically Heated Porous Microchannels With Solid-Phase Heat Generation
,”
Energy Convers. Manage.
,
105
, pp.
731
745
. 10.1016/j.enconman.2015.08.022
7.
Hunt
,
G.
,
Karimi
,
N.
, and
Torabi
,
M.
,
2017
, “
Analytical Investigation of Heat Transfer and Classical Entropy Generation in Microreactors—The Influences of Exothermicity and Asymmetry
,”
Appl. Therm. Eng.
,
119
, pp.
403
424
. 10.1016/j.applthermaleng.2017.03.057
8.
Saeed
,
A.
,
Karimi
,
N.
,
Hunt
,
G.
, and
Torabi
,
M.
,
2019
, “
On the Influence of Surface Heat Release and Thermal Radiation Upon Transport in Catalytic Porous Microreactors—A Novel Porous-Solid Interface Model
,”
Chem. Eng. Process.
,
143
, p.
107602
. 10.1016/j.cep.2019.107602
9.
Kefayati
,
G. H. R.
,
2016
, “
Heat Transfer and Entropy Generation of Natural Convection on Non-Newtonian Nanofluids in a Porous Cavity
,”
Powder Technol.
,
299
, pp.
127
149
. 10.1016/j.powtec.2016.05.032
10.
Hoseinpour
,
B.
,
Ashorynejad
,
H. R.
, and
Javaherdeh
,
K.
,
2017
, “
Entropy Generation of Nanofluid in a Porous Cavity by Lattice Boltzmann Method
,”
J. Thermophys. Heat Transfer
,
31
(
1
), pp.
20
27
. 10.2514/1.T4652
11.
Siavashi
,
M.
,
Yousofvand
,
R.
, and
Rezanejad
,
S.
,
2018
, “
Nanofluid and Porous Fins Effect on Natural Convection and Entropy Generation of Flow Inside a Cavity
,”
Adv. Powder Technol.
,
29
(
1
), pp.
142
156
. 10.1016/j.apt.2017.10.021
12.
Baghsaz
,
S.
,
Rezanejad
,
S.
, and
Moghimi
,
M.
,
2019
, “
Numerical Investigation of Transient Natural Convection and Entropy Generation Analysis in a Porous Cavity Filled With Nanofluid Considering Nanoparticles Sedimentation
,”
J. Mol. Liq.
,
279
, pp.
327
341
. 10.1016/j.molliq.2019.01.117
13.
Hussain
,
S.
,
Mehmood
,
K.
,
Sagheer
,
M.
, and
Yamin
,
M.
,
2018
, “
Numerical Simulation of Double Diffusive Mixed Convective Nanofluid Flow and Entropy Generation in a Square Porous Enclosure
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1283
1297
. 10.1016/j.ijheatmasstransfer.2018.02.082
14.
Hosseini
,
S. R.
,
Ghasemian
,
M.
,
Sheikholeslami
,
M.
,
Shafee
,
A.
, and
Li
,
Z.
,
2019
, “
Entropy Analysis of Nanofluid Convection in a Heated Porous Microchannel Under MHD Field Considering Solid Heat Generation
,”
Powder Technol.
,
344
, pp.
914
925
. 10.1016/j.powtec.2018.12.078
15.
Ibáñez
,
G.
,
López
,
A.
,
Pantoja
,
J.
, and
Moreira
,
J.
,
2016
, “
Entropy Generation Analysis of a Nanofluid Flow in MHD Porous Microchannel With Hydrodynamic Slip and Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
100
, pp.
89
97
. 10.1016/j.ijheatmasstransfer.2016.04.089
16.
Lopez
,
A.
,
Ibanez
,
G.
,
Pantoja
,
J.
,
Moreira
,
J.
, and
Lastres
,
O.
,
2017
, “
Entropy Generation Analysis of MHD Nanofluid Flow in a Porous Vertical Microchannel With Nonlinear Thermal Radiation, Slip Flow and Convective-Radiative Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
107
, pp.
982
994
. 10.1016/j.ijheatmasstransfer.2016.10.126
17.
Goqo
,
S. P.
,
Mondal
,
H.
,
Sibanda
,
P.
, and
Motsa
,
S. S.
,
2019
, “
A Multivariate Spectral Quasilinearisation Method for Entropy Generation in a Square Cavity Filled With Porous Medium Saturated by Nanofluid
,”
Case Stud. Therm. Eng.
,
14
, p.
100415
. 10.1016/j.csite.2019.100415
18.
Mansour
,
M. A.
,
Siddiqa
,
S.
,
Gorla
,
R. S. R.
, and
Rashad
,
A. M.
,
2018
, “
Effects of Heat Source and Sink on Entropy Generation and MHD Natural Convection of Al2O3-Cu/Water Hybrid Nanofluid Filled With Square Porous Cavity
,”
Ther. Sci. Eng. Prog.
,
6
, pp.
57
71
. 10.1016/j.tsep.2017.10.014
19.
Alizadeh
,
R.
,
Karimi
,
N.
, and
Nourbakhsh
,
A.
,
2019
, “
Effects of Radiation and Magnetic Field on Mixed Convection Stagnation-Point Flow Over a Cylinder in a Porous Medium Under Local Thermal Non-Equilibrium
,”
J. Therm. Anal. Calorim.
,
140
, pp.
1371
1391
. 10.1007/s10973-019-08415-1
20.
Gomari
,
S. R.
,
Alizadeh
,
R.
,
Alizadeh
,
A.
, and
Karimi
,
N.
,
2019
, “
Generation of Entropy During Forced Convection of Heat in Nanofluid Stagnation-Point Flows over a Cylinder Embedded in Porous Media
,”
Numerical Heat Transfer, Part A: Appl.
,
75
(
10
), pp.
647
673
.
21.
Rashidi
,
M. M.
,
Ali
,
M.
,
Freidoonimehr
,
N.
, and
Nazari
,
F.
,
2013
, “
Parametric Analysis and Optimization of Entropy Generation in Unsteady MHD Flow Over a Stretching Rotating Disk Using Artificial Neural Network and Particle Swarm Optimization Algorithm
,”
Energy
,
55
, pp.
497
510
. 10.1016/j.energy.2013.01.036
22.
Ebrahimi-Moghadam
,
A.
,
Mohseni-Gharyehsafa
,
B.
, and
Farzaneh-Gord
,
M.
,
2018
, “
Using Artificial Neural Network and Quadratic Algorithm for Minimizing Entropy Generation of Al2O3-EG/W Nanofluid Flow Inside Parabolic Trough Solar Collector
,”
Renewable Energy
,
129
, pp.
473
485
. 10.1016/j.renene.2018.06.023
23.
Siavashi
,
M.
,
Bahrami
,
H. R. T.
, and
Aminian
,
E.
,
2018
, “
Optimization of Heat Transfer Enhancement and Pumping Power of a Heat Exchanger Tube Using Nanofluid With Gradient and Multi-Layered Porous Foams
,”
Appl. Therm. Eng.
,
138
, pp.
465
474
. 10.1016/j.applthermaleng.2018.04.066
24.
Shahsavar
,
A.
,
Moradi
,
M.
, and
Bahiraei
,
M.
,
2018
, “
Heat Transfer and Entropy Generation Optimization for Flow of a Non-Newtonian Hybrid Nanofluid Containing Coated CNT/Fe3O4 Nanoparticles in a Concentric Annulus
,”
J. Taiwan Inst. Chem. Eng.
,
84
, pp.
28
40
. 10.1016/j.jtice.2017.12.029
25.
Bahiraei
,
M.
,
Nazari
,
S.
,
Moayedi
,
H.
, and
Safarzadeh
,
H.
,
2020
, “
Using Neural Network Optimized by Imperialist Competition Method and Genetic Algorithm to Predict Water Productivity of a Nanofluid-Based Solar Still Equipped With Thermoelectric Modules
,”
Powder Technol.
,
366
, pp.
571
586
. 10.1016/j.powtec.2020.02.055
26.
Keykhah
,
S.
,
Assareh
,
E.
,
Moltames
,
R.
,
Izadi
,
M.
, and
Ali
,
H. M.
,
2019
, “
Heat Transfer and Fluid Flow for Tube Included a Porous Media: Assessment and Multi-Objective Optimization Using Particle Swarm Optimization (PSO) Algorithm
,”
Phys. A
, p.
123804
. 10.1016/j.physa.2019.123804
27.
Abad
,
J. M. N.
,
Alizadeh
,
R.
,
Fattahi
,
A.
,
Doranehgard
,
M. H.
,
Alhajri
,
E.
, and
Karimi
,
N.
,
2020
, “
Analysis of Transport Processes in a Reacting Flow of Hybrid Nanofluid Around a Bluff-Body Embedded in Porous Media Using Artificial Neural Network and Particle Swarm Optimization
,”
J. Mol. Liq.
,
313
, p.
113492
. 10.1016/j.molliq.2020.113492
28.
Alizadeh
,
R.
,
Mohebbi Najm Abad
,
J.
,
Fattahi
,
A.
,
Alhajri
,
E. S.
, and
Karimi
,
N.
,
2020
, “
Application of Machine Learning to Investigation of Heat and Mass Transfer Over a Cylinder Surrounded by Porous Media—The Radial Basic Function Network
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112109
. 10.1115/1.4047402
29.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Karimi
,
N.
, and
Alizadeh
,
A.
,
,
2017
, “
On the Hydrodynamics and Heat Convection of an Impinging External Flow Upon a Cylinder With Transpiration and Embedded in a Porous Medium
,”
Transp. Porous Media
,
120
(
3
), pp.
579
604
. 10.1007/s11242-017-0942-9
30.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Arjmandzadeh
,
R.
,
Najafi
,
M.
, and
Alizadeh
,
A.
,
2016
, “
Unaxisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid with Variable Viscosity on a Cylinder in Constant Heat Flux
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1271
1283
. 10.1016/j.aej.2016.04.017
31.
Gomari
,
S. R.
,
Alizadeh
,
R.
,
Alizadeh
,
A.
, and
Karimi
,
N.
,
2019
, “
Generation of Entropy During Forced Convection of Heat in Nanofluid Stagnation-Point Flows Over a Cylinder Embedded in Porous Media
,”
Numer. Heat Transfer, Part A
,
75
(
10
), pp.
647
673
. 10.1080/10407782.2019.1608774
32.
Tahmasebi
,
A.
,
Mahdavi
,
M.
, and
Ghalambaz
,
M.
,
2018
, “
Local Thermal Nonequilibrium Conjugate Natural Convection Heat Transfer of Nanofluids in a Cavity Partially Filled With Porous Media Using Buongiorno’s Model
,”
Numer. Heat Transfer, Part A
,
73
(
4
), pp.
254
276
. 10.1080/10407782.2017.1422632
33.
Cunning
,
G. M.
,
Davis
,
A. M. J.
, and
Weidman
,
P. D.
,
1998
, “
Radial Stagnation Flow on a Rotating Circular Cylinder With Uniform Transpiration
,”
J. Eng. Math.
,
33
(
2
), pp.
113
128
. 10.1023/A:1004243728777
34.
Thomas
,
J. W.
,
2013
,
Numerical Partial Differential Equations: Finite Difference Methods
(Vol.
22
),
Springer Science & Business Media
,
New York
.
35.
Ganesan
,
P.
, and
Palani
,
G.
,
2004
, “
Finite Difference Analysis of Unsteady Natural Convection MHD Flow Past an Inclined Plate With Variable Surface Heat and Mass Flux
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4449
4457
. 10.1016/j.ijheatmasstransfer.2004.04.034
36.
Ghadikolaei
,
S. S.
,
Yassari
,
M.
,
Sadeghi
,
H.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2017
, “
Investigation on Thermophysical Properties of Tio2–Cu/H2O Hybrid Nanofluid Transport Dependent on Shape Factor in MHD Stagnation Point Flow
,”
Powder Technol.
,
322
, pp.
428
438
. 10.1016/j.powtec.2017.09.006
37.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Torabi
,
M.
,
Karimi
,
N.
,
Peterson
,
G. P.
, and
Yee
,
S.
,
2017
, “
Challenges and Progress on the Modelling of Entropy Generation in Porous Media: A Review
,”
Int. J. Heat Mass Transfer
,
114
, pp.
31
46
. 10.1016/j.ijheatmasstransfer.2017.06.021
39.
Torabi
,
M.
,
Zhang
,
K.
,
Karimi
,
N.
, and
Peterson
,
G. P.
,
2016
, “
Entropy Generation in Thermal Systems With Solid Structures—A Concise Review
,”
Int. J. Heat Mass Transfer
,
97
, pp.
917
931
. 10.1016/j.ijheatmasstransfer.2016.03.007
40.
Saleh
,
R.
, and
Rahimi
,
A. B.
,
2004
, “
Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Moving Cylinder With Time-Dependent Axial Velocity and Uniform Transpiration
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
997
1005
. 10.1115/1.1845556
41.
Gorla
,
R. S. R.
,
1976
, “
Heat Transfer in an Axisymmetric Stagnation Flow on a Cylinder
,”
Appl. Sci. Res.
,
32
(
5
), pp.
541
553
. 10.1007/BF00385923
42.
Hassoun
,
M. H.
,
1995
,
Fundamentals of Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
.
43.
Alanis
,
A. Y.
,
Arana-Daniel
,
N.
, and
Lopez-Franco
,
C.
,
2019
,
Artificial Neural Networks for Engineering Applications
,
Academic Press
,
Cambridge, MA
.
44.
AlNuaimi
,
N.
,
Masud
,
M. M.
,
Serhani
,
M. A.
, &
Zaki
,
N.
,
2019
.
Streaming Feature Selection Algorithms for Big Data: A Survey
.
Appl. Comput. Inform.
10.1016/j.aci.2019.01.001
45.
Sakar
,
C. O.
,
Kursun
,
O.
, and
Gurgen
,
F.
,
2012
, “
A Feature Selection Method Based on Kernel Canonical Correlation Analysis and the Minimum Redundancy–Maximum Relevance Filter Method
,”
Expert Syst. Appl.
,
39
(
3
), pp.
3432
3437
. 10.1016/j.eswa.2011.09.031
46.
Parsopoulos
,
K. E.
, and
Vrahatis
,
M. N.
,
2010
, Particle Swarm Optimization and Intelligence: Advances and Applications,
Information Science Reference, Hershey, PA.
http://dx.doi.org/10.4018/978-1-61520-666-7
47.
Sibalija
,
T. V.
,
2019
, “
Particle Swarm Optimisation in Designing Parameters of Manufacturing Processes: A Review (2008–2018)
,”
Appl. Soft Comput.
,
84
, p.
105743
. 10.1016/j.asoc.2019.105743
48.
Chan
,
F.
, and
Tiwari
,
M.
,
2007
,
Swarm Intelligence: Focus on ant and Particle Swarm Optimization
, BoD–Books on Demand.
49.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A. J.
, and
Vapnik
,
V.
,
1997
, “
Support Vector Regression Machines
,”
Adv. Neural. Inf. Process Syst.
, pp.
155
161
.
50.
Strutz
,
T.
,
2010
,
Data Fitting and Uncertainty. A Practical Introduction to Weighted Least Squares and Beyond
,
Teubner Verlag
,
Berlin
.
51.
Broomhead
,
D. S.
, and
Lowe
,
D.
,
1988
, “
Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks
,” (No. RSRE-MEMO-4148), Royal Signals and Radar Establishment Malvern, UK.
You do not currently have access to this content.