Abstract

In this study, numerical simulation of formation of droplet within T-shaped microchannel is investigated. Three-dimensional, transient and two-phase numerical solution for four different microchannels with different stepping positions in the flow path was performed. Various parameters such as volume fraction, Nusselt number, pressure, Reynolds number, and temperature are discussed. The results show that the location of stepped barriers in the flow path affects the process of droplet formation, its number and size in the microchannel and should be considered as an important factor in determining the fluid behavior in the microchannel. It was observed that by placing half of the step at the entrance and the other half after the entrance, the continuous phase (S3 mode) was formed in 37.5 s compared to the other modes. The droplets were also smaller in size and more in numbers. It was also observed that the maximum value for the Nusselt number was obtained for the S2 mode where the step was located just above the discrete-phase entrance. In addition, the pressure at the inlet was higher and the flow velocity increased after the step and its pressure decreased, and continued to decrease due to frictional path.

References

1.
Belkadi
,
A.
,
Montillet
,
A.
, and
Bellettre
,
J.
,
2018
, “
Biofuel Emulsifier Using High-Velocity Impinging Flows and Singularities in Microchannels
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012202
. 10.1115/1.4037370
2.
Fronk
,
B. M.
, and
Zada
,
K. R.
,
2017
, “
Evaluation of Heat and Mass Transfer Models for Sizing Low-Temperature Kalina Cycle Microchannel Condensers
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022002
. 10.1115/1.4034229
3.
Kayed
,
H.
,
Mohamed
,
A.
,
Yehia
,
M.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Investigation of Auto-Ignition Characteristics in Microstructured Catalytic Honeycomb Reactor for CH4–Air and CH4–H2–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082209
. 10.1115/1.4042825
4.
Kim
,
M.-H.
, and
Bullard
,
C. W.
,
2002
, “
Performance Evaluation of a Window Room Air Conditioner With Microchannel Condensers
,”
ASME J. Energy Resour. Technol.
,
124
(
1
), pp.
47
55
. 10.1115/1.1446072
5.
Rybiński
,
W.
, and
Mikielewicz
,
J.
,
2020
, “
Statistical Determination of the Experimental Channels Clogging Rates in Mini- and Microchannel Heat Exchangers
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022003
. 10.1115/1.4045468
6.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
7.
Qian
,
D.
, and
Lawal
,
A.
,
2006
, “
Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-Junction Microchannel
,”
Chem. Eng. Sci.
,
61
(
23
), pp.
7609
7625
. 10.1016/j.ces.2006.08.073
8.
Xu
,
J. H.
,
Li
,
S.
,
Tan
,
J.
, and
Luo
,
G.
,
2008
, “
Correlations of Droplet Formation in T-Junction Microfluidic Devices: From Squeezing to Dripping
,”
Microfluid. Nanofluid.
,
5
(
6
), pp.
711
717
. 10.1007/s10404-008-0306-4
9.
Christopher
,
G. F.
,
Noharuddin
,
N. N.
,
Taylor
,
J. A.
, and
Anna
,
S. L.
,
2008
, “
Experimental Observations of the Squeezing-to-Dripping Transition in T-Shaped Microfluidic Junctions
,”
Phys. Rev. E
,
78
(
3
), p.
036317
. 10.1103/PhysRevE.78.036317
10.
Gupta
,
A.
, and
Kumar
,
R.
,
2010
, “
Flow Regime Transition at High Capillary Numbers in a Microfluidic T-Junction: Viscosity Contrast and Geometry Effect
,”
Phys. Fluids
,
22
(
12
), p.
122001
. 10.1063/1.3523483
11.
van Steijn
,
V.
,
Kleijn
,
C. R.
, and
Kreutzer
,
M. T.
,
2010
, “
Predictive Model for the Size of Bubbles and Droplets Created in Microfluidic T-Junctions
,”
Lab Chip
,
10
(
19
), pp.
2513
2518
. 10.1039/c002625e
12.
Chen
,
N.
,
Wu
,
J.
,
Jiang
,
H.
, and
Dong
,
L.
,
2012
, “
CFD Simulation of Droplet Formation in a Wide-Type Microfluidic T-Junction
,”
J. Dispersion Sci. Technol.
,
33
(
11
), pp.
1635
1641
. 10.1080/01932691.2011.623541
13.
Li
,
X.-B.
,
Li
,
F.-C.
,
Yang
,
J.-C.
,
Kinoshita
,
H.
,
Oishi
,
M.
, and
Oshima
,
M.
,
2012
, “
Study on the Mechanism of Droplet Formation in T-Junction Microchannel
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
340
351
. 10.1016/j.ces.2011.10.048
14.
Yeom
,
S.
, and
Lee
,
S. Y.
,
2011
, “
Size Prediction of Drops Formed by Dripping at a Micro T-Junction in Liquid–Liquid Mixing
,”
Exp. Therm. Fluid. Sci.
,
35
(
2
), pp.
387
394
. 10.1016/j.expthermflusci.2010.10.009
15.
Yan
,
Y.
,
Guo
,
D.
, and
Wen
,
S.
,
2012
, “
Numerical Simulation of Junction Point Pressure During Droplet Formation in a Microfluidic T-Junction
,”
Chem. Eng. Sci.
,
84
, pp.
591
601
. 10.1016/j.ces.2012.08.055
16.
Glawdel
,
T.
,
Elbuken
,
C.
, and
Ren
,
C. L.
,
2012
, “
Droplet Formation in Microfluidic T-Junction Generators Operating in the Transitional Regime. I. Experimental Observations
.
Phys. Rev. E
,
85
(
1
), p.
016322
. 10.1103/PhysRevE.85.016322
17.
Wehking
,
J. D.
,
Gabany
,
M.
,
Chew
,
L.
, and
Kumar
,
R.
,
2014
, “
Effects of Viscosity, Interfacial Tension, and Flow Geometry on Droplet Formation in a Microfluidic T-Junction
,”
Microfluid. Nanofluid.
,
16
(
3
), pp.
441
453
. 10.1007/s10404-013-1239-0
18.
Yang
,
H.
,
Zhou
,
Q.
, and
Fan
,
L.-S.
,
2013
, “
Three-Dimensional Numerical Study on Droplet Formation and Cell Encapsulation Process in a Micro T-Junction
,”
Chem. Eng. Sci.
,
87
, pp.
100
110
. 10.1016/j.ces.2012.10.008
19.
Zeng
,
W.
,
Li
,
S.
, and
Wang
,
Z.
,
2016
, “
Retraction: Linear Model of a T-Junction Microdroplet Generator for Precise Control of Droplet Size
,”
Soft Matter
,
12
(
18
), pp.
4274
4274
. 10.1039/C6SM90065H
20.
Loizou
,
K.
,
Thielemans
,
W.
, and
Hewakandamby
,
B. N.
,
2013
, “
Effect of Geometry on Droplet Generation in a Microfluidic T-Junction
,”
Proceedings of ASME 2013 Fluids Engineering Division Summer Meeting
,
Incline Village, NV
,
July 7–11
.
21.
Yamamoto
,
K.
, and
Ogata
,
S.
,
2013
, “
Effects of T-Junction Size on Bubble Generation and Flow Instability for Two-Phase Flows in Circular Microchannels
,”
Int. J. Multiphase Flow
,
49
, pp.
24
30
. 10.1016/j.ijmultiphaseflow.2012.09.002
22.
Loizou
,
K.
,
Wong
,
V.-L.
,
Thielemans
,
W.
, and
Hewakandamby
,
B.
,
2014
, “
Effect of Fluid Properties on Droplet Generation in a Microfluidic T-Junction
,”
Proceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
,
Chicago, IL
,
Aug. 3–7
.
23.
Ushikubo
,
F.
,
Birribilli
,
F.
,
Oliveira
,
D.
, and
Cunha
,
R.
,
2014
, “
Y-and T-Junction Microfluidic Devices: Effect of Fluids and Interface Properties and Operating Conditions
,”
Microfluid. Nanofluid.
,
17
(
4
), pp.
711
720
. 10.1007/s10404-014-1348-4
24.
Pang
,
Y.
, and
Liu
,
Z.
,
2015
, “
Study of Liquid Flow in the T-Shape Channel With the Side Wall Fluctuation
,”
Proceedings of 10th Pacific Symposium on Flow Visualization and Image Processing
,
Naples, Italy
,
June 15–18
.
25.
Wang
,
X.
,
Riaud
,
A.
,
Wang
,
K.
, and
Luo
,
G.
,
2015
, “
Pressure Drop-Based Determination of Dynamic Interfacial Tension of Droplet Generation Process in T-Junction Microchannel
,”
Microfluid. Nanofluid.
,
18
(
3
), pp.
503
512
. 10.1007/s10404-014-1449-0
26.
Glawdel
,
T.
,
Elbuken
,
C.
, and
Ren
,
C. L.
,
2012
, “
Droplet Formation in Microfluidic T-Junction Generators Operating in the Transitional Regime. II. Modeling
,”
Phys. Rev. E
,
85
(
1
), p.
016323
. 10.1103/PhysRevE.85.016323
27.
Soh
,
G. Y.
,
Yeoh
,
G. H.
, and
Timchenko
,
V.
,
2016
, “
Numerical Investigation on the Velocity Fields During Droplet Formation in a Microfluidic T-Junction
,”
Chem. Eng. Sci.
,
139
, pp.
99
108
. 10.1016/j.ces.2015.09.025
28.
Azarmanesh
,
M.
, and
Farhadi
,
M.
,
2016
, “
The Effect of Weak-Inertia on Droplet Formation Phenomena in T-Junction Microchannel
,”
Meccanica
,
51
(
4
), pp.
819
834
. 10.1007/s11012-015-0245-6
29.
Bai
,
L.
,
Fu
,
Y.
,
Zhao
,
S.
, and
Cheng
,
Y.
,
2016
, “
Droplet Formation in a Microfluidic T-Junction Involving Highly Viscous Fluid Systems
,”
Chem. Eng. Sci.
,
145
, pp.
141
148
. 10.1016/j.ces.2016.02.013
30.
Fu
,
H.
,
Zeng
,
W.
, and
Li
,
S.
,
2017
, “
Quantitative Study of the Production Rate of Droplets in a T-Junction Microdroplet Generator
,”
J. Micromech. Microeng.
,
27
(
12
), p.
125020
. 10.1088/1361-6439/aa94b3
31.
Mahdi
,
Y.
,
Daoud
,
K.
, and
Tadrist
,
L.
,
2017
, “
Two-Phase Flow Patterns and Size Distribution of Droplets in a Microfluidic T-Junction: Experimental Observations in the Squeezing Regime
,”
C. R. Mec.
,
345
(
4
), pp.
259
270
. 10.1016/j.crme.2017.02.001
32.
Dos Santos
,
E. C.
,
Ładosz
,
A.
,
Maggioni
,
G. M.
,
von Rohr
,
P. R.
, and
Mazzotti
,
M.
,
2018
, “
Characterization of Shapes and Volumes of Droplets Generated in PDMS T-Junctions to Study Nucleation
,”
Chem. Eng. Res. Des.
,
138
, pp.
444
457
. 10.1016/j.cherd.2018.09.001
33.
Loizou
,
K.
,
Wong
,
V.-L.
, and
Hewakandamby
,
B.
,
2018
, “
Examining the Effect of Flow Rate Ratio on Droplet Generation and Regime Transition in a Microfluidic T-Junction at Constant Capillary Numbers
,”
Inventions
,
3
(
3
), p.
54
. 10.3390/inventions3030054
You do not currently have access to this content.