Abstract

Based on the measured injection rates obtained from the spray momentum experiment, the three-dimensional computational fluid dynamics simulation study on the effect of injection rate from each nozzle hole on spray characteristics and combustion process was conducted for a one-cylinder diesel engine. The simulation model was successfully verified by the data of the experiment. The results show that at the beginning and mid-stages of injection, the nozzles with a higher transient injection rate exhibit higher jet velocity, bigger spray penetration distance, and wider equivalence ratio distribution. Besides, the disturbance induced by fuel injection on their surrounding gas is higher. Due to the difference in injection rates from each nozzle hole in the cylinder, gas–fuel mixtures are non-uniform. In the case of measured injection rates from each nozzle hole, Hole 4 records the highest instantaneous injection rate. This results in the injection of more fuel during ignition delay. More heat generated from thermal chain reactions raises fuel spray temperatures and quicker ignition of mixtures. In the case of uniform simulated injection rate (injection quantity values are the same as in the previous case), more uniform flow fields and stronger small swirl motions were generated that enhance fuel atomization and mixture formations. At the later stages of injection and combustion, quicker diesel fuel burning rate with a centralized exothermic reaction process occurs due to in-cylinder uniform fuel distribution and air motion. In the case of simulating uniform injection rate from three holes and non-injection from one (same injection quantity values as previous cases), uneven fuel distribution that occurs in the cylinder will result in poor mixture formations and subsequently poor combustion, and more afterburning will occur.

References

1.
Yousefi
,
A.
, and
Birouk
,
M.
,
2017
, “
An Investigation of Multi-Injection Strategies for a Dual-Fuel Pilot Diesel Ignition Engines at low Load
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012201
. 10.1115/1.4033707
2.
Yadav
,
J.
, and
Ramesh
,
A.
,
2018
, “
Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072206
. 10.1115/1.4039546
3.
Som
,
S.
,
Ramirez
,
A. I.
,
Longman
,
D. E.
, and
Aggarwal
,
S. K.
,
2011
, “
Effect of Nozzle Orifice Geometry on Spray, Combustion, and Emission Characteristics Under Diesel Engine Conditions
,”
Fuel
,
90
(
3
), pp.
1267
1276
. 10.1016/j.fuel.2010.10.048
4.
An
,
Y. Z.
,
Huang
,
H. Z.
,
Pei
,
Y. Q.
,
Liang
,
Y. F.
,
Zhao
,
R. Q.
, and
Zhang
,
J. Y.
,
2012
, “
The Development of Automotive Diesel Engine Fuel Spray Research
,”
Small Internal Combust. Engine Motorcycle
,
41
(
5
), pp.
87
92
.
5.
Saraei
,
S. H.
, and
Khalilarya
,
S.
,
2018
, “
Diesel Combustion in Heavy-Duty Engine With Single-and Double-Injection Strategies
,”
J. Mech. Sci. Technol.
,
32
(
4
), pp.
1889
1896
. 10.1007/s12206-018-0345-z
6.
Poorghasemi
,
K.
,
Saray
,
R. K.
,
Ansari
,
E.
,
Irdmousa
,
B. K.
,
Shahbakhti
,
M.
, and
Naber
,
J. D.
,
2017
, “
Effect of Diesel Injection Strategies on Natural gas/Diesel RCCI Combustion Characteristics in a Light Duty Diesel Engine
,”
Appl. Energy
,
199
, pp.
430
446
. 10.1016/j.apenergy.2017.05.011
7.
Gnanasekaran
,
S.
,
Saravanan
,
N.
, and
Ilangkumaran
,
M.
,
2016
, “
Influence of Injection Timing on Performance, Emission and Combustion Characteristics of a DI Diesel Engine Running on Fish oil Biodiesel
,”
Energy
,
116
, pp.
1218
1229
. 10.1016/j.energy.2016.10.039
8.
Kim
,
H. J.
,
Park
,
S. H.
, and
Lee
,
C. S.
,
2016
, “
Impact of Fuel Spray Angles and Injection Timing on the Combustion and Emission Characteristics of a High-Speed Diesel Engine
,”
Energy
,
107
, pp.
572
579
. 10.1016/j.energy.2016.04.035
9.
Benajes
,
J.
,
Martín
,
J.
,
García
,
A.
,
Villalta
,
D.
, and
Warey
,
A.
,
2017
, “
Swirl Ratio and Post Injection Strategies to Improve Late Cycle Diffusion Combustion in a Light-Duty Diesel Engine
,”
Appl. Therm. Eng.
,
123
, pp.
365
376
. 10.1016/j.applthermaleng.2017.05.101
10.
Qiu
,
L.
,
Cheng
,
X. B.
,
Liu
,
B.
,
Dong
,
S. J.
, and
Bao
,
Z. F.
,
2016
, “
Partially Premixed Combustion Based on Different Injection Strategies in a Light-Duty Diesel Engine
,”
Energy
,
96
, pp.
155
165
. 10.1016/j.energy.2015.12.052
11.
Hotta
,
Y.
,
Inayoshi
,
M.
,
Nakakita
,
K.
,
Fujiwara
,
K.
, and
Sakata
,
I.
,
2005
, “
Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection
,” SAE Technical Paper, 2005-01-0928.
12.
Liu
,
W.
, and
Song
,
C.
,
2016
, “
Effect of Post Strategy on Regulated Exhaust Emissions and Particulate Matter in a HSDI Diesel Engine
,”
Fuel
,
185
, pp.
1
9
. 10.1016/j.fuel.2016.07.057
13.
Marčič
,
M.
,
2006
, “
Sensor for Injection Rate Measurements
,”
Sensors
,
6
(
10
), pp.
1367
1382
. 10.3390/s6101367
14.
Marčič
,
M.
,
2003
, “
Measuring Method for Diesel Multihole Injection Nozzles
,”
Sens. Actuators, A
,
107
(
2
), pp.
152
158
. 10.1016/S0924-4247(03)00205-X
15.
Luo
,
F. Q.
,
Cui
,
H. F.
, and
Dong
,
S. F.
,
2014
, “
Transient Measuring Method for Injection Rate of Each Nozzle Hole Based on Spray Momentum Flux
,”
Fuel
,
125
, pp.
20
29
. 10.1016/j.fuel.2014.02.011
16.
Liu
,
J. X.
,
Du
,
H. Y.
,
Li
,
M.
,
Zong
,
Y. P.
, and
Zhao
,
Z. H.
,
2002
, “
Measurement and Analysis on Momentum of Spray of Diesel Engine
,”
J. Luoyang Inst. Technol.
,
23
(
3
), pp.
48
50
.
17.
Fang
,
J. F.
,
Ge
,
S. Q.
,
Yan
,
J. C.
, and
Zong
,
Y. P.
,
2006
, “
Effect of Four Hole Injector Flux Distribution on Fuel Spray and Diesel Engine Performance
,”
J. Hubei Automot. Ind. Inst.
,
20
(
4
), pp.
5
7
.
18.
Fang
,
J. F.
,
Du
,
H. Y.
,
Liu
,
J. X.
,
Li
,
M.
,
Zong
,
Y. P.
, and
Wang
,
F.
,
2004
, “
Effect of Flow Coefficient on Fuel Spray and Diesel Engine Performance
,”
J. Henan Univ. Sci. Technol., Nat. Sci.
,
25
(
2
), pp.
24
27
.
19.
Zhou
,
L. Y.
,
Dong
,
S. F.
,
Cui
,
H. F.
,
Wu
,
X. W.
,
Xue
,
F. Y.
, and
Luo
,
F. Q.
,
2016
, “
Measurements and Analyses on the Transient Discharge Coefficient of Each Nozzle Hole of Multi-Hole Diesel Injector
,”
Sens. Actuators, A
,
244
, pp.
198
205
. 10.1016/j.sna.2016.04.017
20.
Wang
,
Z. Y.
,
Cheng
,
X. W.
,
Liang
,
Y.
, and
Luo
,
F. Q.
,
2012
, “
3-D Simulation of Combustion Process in a Diesel Engine Fueled with Jatropha curcas oil
,”
Trans. Chin. Soc. Agric. Mach.
,
43
(
3
), pp.
16
21
.
21.
Luo
,
F. Q.
,
Gao
,
Z. Y.
,
Liu
,
S. J.
, and
Miao
,
Y. C.
,
1995
, “
An Investigation on Fuel Injection and Combustion Distribution Evenness in a Multi-Cylinder Diesel Engine
,”
Trans. Chin. Soc. Agric. Mac.
,
26
(
4
), pp.
1
4
.
22.
Magno
,
A.
,
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2014
, “
Experimental Investigation in an Optically Accessible Diesel Engine of a Fouled Piezoelectric Injector
,”
Energy
,
64
, pp.
842
852
. 10.1016/j.energy.2013.10.071
23.
Payri
,
R.
,
Salvador
,
F. J.
,
García
,
A.
, and
Gil
,
A.
,
2012
, “
Combination of Visualization Techniques for the Analysis of Evaporating Diesel Sprays
,”
Energy Fuels
,
26
(
9
), pp.
5481
5490
. 10.1021/ef3008823
24.
Salazar
,
V. M.
, and
Kaiser
,
S. A.
,
2009
, “
An Optical Study of Mixture Preparation in a Hydrogen-Fueled Engine With Direct Injection Using Different Nozzle Designs
,”
SAE Int. J. Engines
,
2
(
2
), pp.
119
131
. 10.4271/2009-01-2682
25.
Trost
,
J.
,
Zigan
,
L.
,
Leipertz
,
A.
,
Sahoo
,
D.
, and
Miles
,
P. C.
,
2014
, “
Fuel Concentration Imaging Inside an Optically Accessible Diesel Engine Using 1-Methylnaphthalene Planar Laser-Induced Fluorescence
,”
Int. J Eng. Res.
,
15
(
6
), pp.
741
750
. 10.1177/1468087413515658
26.
Bianchi
,
G. M.
, and
Pelloni
,
P.
,
1999
, “
Modeling the Diesel Fuel Spray Breakup by Using a Hybrid Model
,” SAE Paper, 1999-01-0226.
27.
Xiu
,
L. W.
,
Tian
,
L.
, and
Zheng
,
D. G.
,
1999
, “
A Chemical Kinetical Analysis of Combustion Ignition Delay of Diesel Engine
,”
J. Agric. Mech. Res.
,
1
, pp.
65
68
.
28.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022203
. 10.1115/1.4003808
29.
Kokjohn
,
S.
,
Reitz
,
R.
,
Splitter
,
D.
, and
Musculus
,
M.
,
2012
, “
Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence
,”
SAE Int. J. Engine
,
5
(
2
), pp.
248
269
. 10.4271/2012-01-0375
30.
Bittle
,
J. A.
, and
Jacobs
,
T. J.
,
2012
, “
On the Relationship Between Fuel Injection Pressure and two-Stage Ignition Behavior of low Temperature Diesel Combustion
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042201
. 10.1115/1.4007252
31.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032201
. 10.1115/1.3185346
32.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
. 10.1115/1.4046225
You do not currently have access to this content.