Abstract

This study analyzes the combustion performance of a syngas-fueled homogenous charge compression ignition (HCCI) engine using a toroidal piston (baseline piston), square bowl, and flat piston shape, at low, medium, and high loads, with a constant compression ratio of 17.1. In this study, the square bowl shape is optimized by reducing the piston bowl depth and squish area ratio (squish area/cylinder cross-sectional area) from 34 to 20, 10, and 2.5% and compared with the flat piston shape and toroidal piston shape. This HCCI engine operates under an overly lean air–fuel mixture condition for power plant usage. ansys forte cfd package with GRI Mech3.0 chemical kinetics is used for combustion analysis, and the calculated results are validated by the experimental results. All simulations are accomplished at maximum brake torque (MBT) by altering the air–fuel mixture temperature at intake valve closing (IVC) (TIVC) with a constant equivalence ratio of 0.27. This study reveals that the main factors that affect the start of combustion (SOC), maximum pressure rise rate (MPRR), combustion efficiency, and thermal efficiency by changing the piston shape are the squish flow and reverse squish flow effects. Therefore, the square bowl piston D is the optimized piston shape that offers low MPRR and high combustion performance for the syngas-fueled HCCI engine, due to the weak squish flow and low heat loss rate through the combustion chamber wall, respectively, when compared with the other piston shapes of square bowl piston A, B, and C, flat piston, and toroidal (baseline) piston shape.

References

1.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.
, and
Dou
,
H.
,
2016
, “
Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052201
.
2.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
3.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
.
4.
Christensen
,
M.
, and
Johansson
,
B.
,
1999
.
Homogeneous Charge Compression Ignition With Water Injection
.
SAE Technical Paper 1999-01-0182
.
5.
Poorghasemi
,
K.
,
Saray
,
R. K.
,
Bahlouli
,
K.
, and
Zehni
,
A.
,
2016
, “
3D CFD Simulation of a Natural Gas Fueled HCCI Engine With Employing a Reduced Mechanism
,”
Fuel.
,
182
, pp.
816
830
.
6.
Aceves
,
S. M.
,
Joel Martinez-Frias
,
D. L. F.
, and
Ray Smith
,
J.
,
2001
.
HCCI Combustion: Analysis and Experiments
.
SAE Technical Paper 2001-01-2077
.
7.
Steinhilber
,
T.
, and
Sattelmayer
,
T.
,
2006
.
The Effect of Water Addition on HCCI Diesel Combustion
.
SAE Technical Paper 2006-01-3321
.
8.
Kurniawan
,
W. H.
,
Abdullah
,
S.
, and
Shamsudeen
,
A.
,
2007
, “
Turbulence and Heat Transfer Analysis of Intake and Compression Stroke in Automotive 4-Stroke Direct Injection Engine
,”
Algerian J. Appl. Fluid Mech.
,
1
, pp.
37
50
.
9.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Control the Combustion Performance of a Syngas-Fueled HCCI Engine at Medium and High Loads Using Different Piston Bowl Geometry and Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082301
.
10.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Investigate the Effect of Syngas Composition and Compression Ratio on the Combustion and Emission Characteristics of a Syngas-Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092301
.
11.
Abdul Gafoor
,
C. P.
, and
Gupta
,
R.
,
2015
, “
Numerical Investigation of Piston Bowl Geometry and Swirl Ratio on Emission From Diesel Engines
,”
Energy Convers. Manage.
,
101
, pp.
541
551
.
12.
Aljaberi
,
H.
,
Aziz Hairuddin
,
A.
, and
Abdul Aziz
,
N.
,
2017
, “
The use of Different Types of Piston in An HCCI Engine: A Review
,”
Int. J. Automot. Mech. Eng
,
14
(
2
), pp.
4348
4268
.
13.
Hessel
,
R. P.
,
Aceves
,
S. M.
, and
Flowers
,
D. L.
,
2006
.
A Comparison of the Effect of Combustion Chamber Surface Area and In-Cylinder Turbulence on the Evolution of Gas Temperature Distribution From IVC to SOC: A Numerical and Fundamental Study
.
SAE Technical Paper 2006-01-0869
.
14.
Kodavasal
,
J.
,
Kolodziej
,
C.
,
Ciatti
,
S.
, and
Som
,
S.
,
2014
. “
CFD Simulation of Gasoline Compression Ignition
.”
ASME 2014 Internal Combustion Engine Division Fall Technical Conference
,
Columbus, IN
,
ICEF
,
2
, pp.
19
22
.
15.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112207
.
16.
Karthikeya Sharma
,
T.
,
Amba Prasad Rao
,
G.
, and
Madhu Murthy
,
K.
,
2015
, “
Influence of Piston Bowl Shape on Flow and Combustion Characteristics in HCCI Engine- A CFD Study
,”
International Conference on New Frontiers in Chemical, Energy and Environmental Engineering (INCEEE-2015)
,
NIT Warangal, India
,
Mar. 21
.
17.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Martinez-Frias
,
J.
,
Espinosa-Loza
,
F.
,
Christensen
,
M.
,
Johansson
,
B.
, and
Hessel
,
R. P.
,
2005
.
Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling
.
SAE Technical Paper 2005-01-2134
.
18.
Khan
,
S.
,
Panua
,
R.
, and
Bose
,
P. K.
,
2018
, “
Combined Effects of Piston Bowl Geometry and Spray Pattern on Mixing, Combustion and Emissions of a Diesel Engine: A Numerical Approach
,”
Fuel
,
225
, pp.
203
217
.
19.
Li
,
J.
,
Yang
,
W. M.
,
An
,
H.
,
Maghbouli
,
A.
, and
Chou
,
S. K.
,
2014
, “
Effects of Piston Bowl Geometry on Combustion and Emission Characteristics of Biodiesel Fueled Diesel Engines
,”
Fuel.
,
120
, pp.
66
73
.
20.
Ladommatos
,
N.
,
Abdelhalim
,
S.
,
Zhao
,
H.
, and
Hu
,
Z.
,
1997
.
The Dilution, Chemical, and Thermal Effects of Exhaust gas Recirculation on Diesel Engine Emissions-Part 4: Effects of Carbon Dioxide and Water Vapour
.
SAE Technical Paper 971660
.
21.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
22.
Kong
,
S.-C.
,
2007
, “
A Study of Natural Gas/DME Combustion in HCCI Engines Using CFD With Detailed Chemical Kinetics
,”
Fuel.
,
86
(
10–11
), pp.
1483
1489
.
23.
Yamasaki
,
Y.
, and
Kaneko
,
S.
,
2014
.
Prediction of Ignition and Combustion Development in an HCCI Engine Fueled by Syngas
.
SAE Technical Paper 2014-32-0002
.
24.
Yousefzadeh
,
A.
, and
Jahanian
,
O.
,
2017
, “
Using Detailed Chemical Kinetics 3D-CFD Model to Investigate Combustion Phase of a CNG-HCCI Engine According to Control Strategy Requirements
,”
Energy Convers. Manage.
,
133
, pp.
524
534
.
25.
Maurya
,
R. K.
, and
Akhil
,
N.
,
2017
, “
Development of a new Reduced Hydrogen Combustion Mechanism With NOx and Parametric Study of Hydrogen HCCI Combustion Using Stochastic Reactor Model
,”
Energy Convers. Manage.
,
132
, pp.
65
81
.
26.
Christensen
,
M.
,
Johansson
,
B.
, and
Hultqvist
,
A.
,
2002
.
The Effect of Combustion Chamber Geometry on HCCI Operation
.
SAE Technical Paper 2002-01-0425
.
27.
D’Amato
,
M.
,
Viggiano
,
A.
, and
Magi
,
V.
,
2020
, “
On the Turbulence-Chemistry Interaction of an HCCI Combustion Engine
,”
Energies.
,
13
(
22
), p.
5876
.
You do not currently have access to this content.