Graphical Abstract Figure

A schematic diagram of the method and diagnostics used to determine the influence of torrefaction temperature on grindability of wheat straw

Graphical Abstract Figure

A schematic diagram of the method and diagnostics used to determine the influence of torrefaction temperature on grindability of wheat straw

Close modal

Abstract

Torrefaction used for the pretreatment of biomass can enhance grindability along with a significant reduction of energy consumption required for pulverization to aid in large-scale utilization of biomass energy. In this study, torrefaction experiments of wheat straw were conducted at different temperatures using an experimental furnace facility. The influence of torrefaction temperature on the grindability of resulting wheat straw was explored using a hardgrove grindability index tester and thermogravimetric-Fourier transform infrared (TG-FTIR) spectroscopy. The results indicated that an increase in torrefaction temperature significantly increased the carbon content of wheat straw and decreased the oxygen content to result in a decrease in the O/C ratio from 0.66 to 0.39. The calorific value increased by 24% from 15.42 MJ/kg to 19.17 MJ/kg. An increase in torrefaction temperature from 220 °C to 269 °C increased the grindability index from 29 to 115. The grindability of wheat straw can be controlled to values similar to that of coal by tuning the torrefaction temperature. The main gas components released during torrefaction were H2O, CH4, CO2, and CO. Thermogravimetric data showed 29% solid residues from the raw wheat straw. An increase in torrefaction temperature increased solid residue to 41%. The pyrolysis of wheat straw at different torrefaction temperatures can be grouped into three stages such as dehydration, rapid pyrolysis, and carbonization. This study reveals effective large-scale utilization of wheat straw biomass as a high heating value solid fuel using torrefaction pretreatment.

References

1.
Manzano-Agugliaro
,
F.
,
Alcayde
,
A.
,
Montoya
,
F. G.
,
Zapata-Sierra
,
A.
, and
Gil
,
C.
,
2013
, “
Scientific Production of Renewable Energies Worldwide: An Overview
,”
Renew. Sustain. Energy Rev.
,
18
, pp.
134
143
.
2.
Wang
,
Z.
,
Lei
,
T.
,
Yang
,
M.
,
Li
,
Z.
,
Qi
,
T.
,
Xin
,
X.
,
He
,
X.
,
Ajayebi
,
A.
, and
Yan
,
X.
,
2017
, “
Life Cycle Environmental Impacts of Cornstalk Briquette Fuel in China
,”
Appl. Energy
,
192
, pp.
83
94
.
3.
Li
,
H.
,
Wang
,
S.
,
Yuan
,
X.
,
Xi
,
Y.
,
Huang
,
Z.
,
Tan
,
M.
, and
Li
,
C.
,
2018
, “
The Effects of Temperature and Color Value on Hydrochars' Properties in Hydrothermal Carbonization
,”
Bioresour. Technol.
,
249
, pp.
574
581
.
4.
Wang
,
Z.
,
Lei
,
T.
,
Yan
,
X.
,
Chen
,
G.
,
Xin
,
X.
,
Yang
,
M.
,
Guan
,
Q.
,
He
,
X.
, and
Gupta
,
A. K.
,
2019
, “
Common Characteristics of Feedstock Stage in Life Cycle Assessments of Agricultural Residue-Based Biofuels
,”
Fuel
,
253
, pp.
1256
1263
.
5.
Vassilev
,
S. V.
,
Vassileva
,
C. G.
, and
Vassilev
,
V. S.
,
2015
, “
Advantages and Disadvantages of Composition and Properties of Biomass in Comparison With Coal: An Overview
,”
Fuel
,
158
, pp.
330
350
.
6.
Bui
,
H.-H.
,
Tran
,
K.-Q.
, and
Chen
,
W.-H.
,
2016
, “
Pyrolysis of Microalgae Residues—A Kinetic Study
,”
Bioresour. Technol.
,
199
, pp.
362
366
.
7.
Sun
,
M.
,
Yang
,
Y.
, and
Zhang
,
M.
,
2019
, “
A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102205
.
8.
Cahyanti
,
M. N.
,
Doddapaneni
,
T. R. K. C.
, and
Kikas
,
T.
,
2020
, “
Biomass Torrefaction: An Overview on Process Parameters, Economic and Environmental Aspects and Recent Advancements
,”
Bioresour. Technol.
,
301
, p.
122737
.
9.
Chen
,
W.-H.
,
Lin
,
B.-J.
,
Lin
,
Y.-Y.
,
Chu
,
Y.-S.
,
Ubando
,
A. T.
,
Show
,
P. L.
,
Ong
,
H. C.
, et al
,
2021
, “
Progress in Biomass Torrefaction: Principles, Applications and Challenges
,”
Prog. Energy Combust. Sci.
,
82
, p.
100887
.
10.
Kambo
,
H. S.
, and
Dutta
,
A.
,
2015
, “
Comparative Evaluation of Torrefaction and Hydrothermal Carbonization of Lignocellulosic Biomass for the Production of Solid Biofuel
,”
Energy Convers. Manage.
,
105
, pp.
746
755
.
11.
Laohalidanond
,
K.
,
Kerdsuwan
,
S.
,
Burra
,
K. R. G.
,
Li
,
J.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Generation From Landfills Derived Torrefied Refuse Fuel Using a Downdraft Gasifier
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052102
.
12.
Zhang
,
C.
,
Ho
,
S.-H.
,
Chen
,
W.-H.
,
Xie
,
Y.
,
Liu
,
Z.
, and
Chang
,
J.-S.
,
2018
, “
Torrefaction Performance and Energy Usage of Biomass Wastes and Their Correlations With Torrefaction Severity Index
,”
Appl. Energy
,
220
, pp.
598
604
.
13.
Batidzirai
,
B.
,
Mignot
,
A. P. R.
,
Schakel
,
W. B.
,
Junginger
,
H. M.
, and
Faaij
,
A. P. C.
,
2013
, “
Biomass Torrefaction Technology: Techno-Economic Status and Future Prospects
,”
Energy
,
62
, pp.
196
214
.
14.
Chen
,
W.-H.
,
Peng
,
J.
, and
Bi
,
X. T.
,
2015
, “
A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications
,”
Renew. Sustain. Energy Rev.
,
44
, pp.
847
866
.
15.
Tran
,
K.-Q.
,
Luo
,
X.
,
Seisenbaeva
,
G.
, and
Jirjis
,
R.
,
2013
, “
Stump Torrefaction for Bioenergy Application
,”
Appl. Energy
,
112
, pp.
539
546
.
16.
Chen
,
W.-H.
, and
Kuo
,
P.-C.
,
2011
, “
Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as well as Torrefaction of Some Basic Constituents in Biomass
,”
Energy
,
36
(
2
), pp.
803
811
.
17.
Chen
,
W.-H.
, and
Kuo
,
P.-C.
,
2010
, “
A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry
,”
Energy
,
35
(
6
), pp.
2580
2586
.
18.
Chen
,
W.-H.
,
Lu
,
K.-M.
, and
Tsai
,
C.-M.
,
2012
, “
An Experimental Analysis on Property and Structure Variations of Agricultural Wastes Undergoing Torrefaction
,”
Appl. Energy
,
100
, pp.
318
325
.
19.
Zheng
,
A.
,
Zhao
,
Z.
,
Chang
,
S.
,
Huang
,
Z.
,
Wang
,
X.
,
He
,
F.
, and
Li
,
H.
,
2013
, “
Effect of Torrefaction on Structure and Fast Pyrolysis Behavior of Corncobs
,”
Bioresour. Technol.
,
128
, pp.
370
377
.
20.
Khazraie Shoulaifar
,
T.
,
DeMartini
,
N.
,
Willför
,
S.
,
Pranovich
,
A.
,
Smeds
,
A. I.
,
Virtanen
,
T. A. P.
,
Maunu
,
S.-L.
,
Verhoeff
,
F.
,
Kiel
,
J. H. A.
, and
Hupa
,
M.
,
2014
, “
Impact of Torrefaction on the Chemical Structure of Birch Wood
,”
Energy Fuels
,
28
(
6
), pp.
3863
3872
.
21.
Bridgeman
,
T. G.
,
Jones
,
J. M.
,
Shield
,
I.
, and
Williams
,
P. T.
,
2008
, “
Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties
,”
Fuel
,
87
(
6
), pp.
844
856
.
22.
Jagodzinska
,
K.
,
Czerep
,
M.
,
Kudlek
,
E.
,
Wnukowski
,
M.
,
Pronobis
,
M.
, and
Yang
,
W.
,
2020
, “
Torrefaction of Agricultural Residues: Effect of Temperature and Residence Time on the Process Products Properties
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070912
.
23.
Rousset
,
P.
,
Davrieux
,
F.
,
Macedo
,
L.
, and
Perré
,
P.
,
2011
, “
Characterisation of the Torrefaction of Beech Wood Using NIRS: Combined Effects of Temperature and Duration
,”
Biomass Bioenergy
,
35
(
3
), pp.
1219
1226
.
24.
Buratti
,
C.
,
Barbanera
,
M.
,
Lascaro
,
E.
, and
Cotana
,
F.
,
2018
, “
Optimization of Torrefaction Conditions of Coffee Industry Residues Using Desirability Function Approach
,”
Waste Manage.
,
73
, pp.
523
534
.
25.
Jiang
,
H.
,
Ye
,
Y.
,
Lu
,
P.
,
Zhao
,
M.
,
Xu
,
G.
,
Chen
,
D.
, and
Song
,
T.
,
2021
, “
Effects of Torrefaction Conditions on the Hygroscopicity of Biochars
,”
J. Energy Inst.
,
96
, pp.
260
268
.
26.
Chen
,
W.-H.
,
Wang
,
C.-W.
,
Ong
,
H. C.
,
Show
,
P. L.
, and
Hsieh
,
T.-H.
,
2019
, “
Torrefaction, Pyrolysis and Two-Stage Thermodegradation of Hemicellulose, Cellulose and Lignin
,”
Fuel
,
258
, p.
116168
.
27.
Liu
,
P.
,
Lang
,
P.
,
Chen
,
Z.
,
Li
,
Y.
,
Sun
,
T.
,
Yang
,
Y.
,
Huhe
,
T.
, and
Lei
,
T.
,
2023
, “
Relevance of Chemical Structure in Different Wood Wastes to Pyrolysis Behavior: Kinetics and Hydrogen Release
,”
J. Energy Inst.
,
111
, p.
101416
.
28.
Barzegar
,
R.
,
Yozgatligil
,
A.
,
Olgun
,
H.
, and
Atimtay
,
A. T.
,
2020
, “
TGA and Kinetic Study of Different Torrefaction Conditions of Wood Biomass Under Air and Oxy-Fuel Combustion Atmospheres
,”
J. Energy Inst.
,
93
(
3
), pp.
889
898
.
29.
Conag
,
A. T.
,
Villahermosa
,
J. E. R.
,
Cabatingan
,
L. K.
, and
Go
,
A. W.
,
2018
, “
Energy Densification of Sugarcane Leaves Through Torrefaction Under Minimized Oxidative Atmosphere
,”
Energy Sustain. Dev.
,
42
, pp.
160
169
.
30.
Bach
,
Q.-V.
,
Skreiberg
,
Ø
, and
Lee
,
C.-J.
,
2017
, “
Process Modeling and Optimization for Torrefaction of Forest Residues
,”
Energy
,
138
, pp.
348
354
.
31.
Chen
,
D.
,
Zheng
,
Z.
,
Fu
,
K.
,
Zeng
,
Z.
,
Wang
,
J.
, and
Lu
,
M.
,
2015
, “
Torrefaction of Biomass Stalk and Its Effect on the Yield and Quality of Pyrolysis Products
,”
Fuel
,
159
, pp.
27
32
.
32.
Wang
,
L.
,
Barta-Rajnai
,
E.
,
Skreiberg
,
Ø
,
Khalil
,
R.
,
Czégény
,
Z.
,
Jakab
,
E.
,
Barta
,
Z.
, and
Grønli
,
M.
,
2018
, “
Effect of Torrefaction on Physiochemical Characteristics and Grindability of Stem Wood, Stump and Bark
,”
Appl. Energy
,
227
, pp.
137
148
.
33.
Fisher
,
T.
,
Hajaligol
,
M.
,
Waymack
,
B.
, and
Kellogg
,
D.
,
2002
, “
Pyrolysis Behavior and Kinetics of Biomass Derived Materials
,”
J. Anal. Appl. Pyrolysis
,
62
(
2
), pp.
331
349
.
34.
Lu
,
Z.
,
Xie
,
T.
,
Chen
,
H.
,
Li
,
L.
,
Li
,
S.
,
Lu
,
Y.
, and
Hu
,
X.
,
2020
, “
Evaluation of Effects of Freezing Pretreatment on the Grindability, Energy Consumption and Chemical Composition of Wheat Straw
,”
Renewable Energy
,
151
, pp.
21
29
.
35.
Wang
,
F.
,
Gao
,
N.
,
Quan
,
C.
, and
López
,
G.
,
2020
, “
Investigation of Hot Char Catalytic Role in the Pyrolysis of Waste Tires in a Two-Step Process
,”
J. Anal. Appl. Pyrolysis
,
146
, p.
104770
.
36.
Zeng
,
Y.
,
Liu
,
Z.
,
Yu
,
J.
,
Hu
,
E.
,
Jia
,
X.
,
Tian
,
Y.
, and
Wang
,
C.
,
2024
, “
Pyrolysis Kinetics and Characteristics of Waste Tyres: Products Distribution and Optimization via TG-FTIR-MS and Rapid Infrared Heating Techniques
,”
Chem. Eng. J.
,
482
, p.
149106
.
37.
Elbaba
,
I. F.
, and
Williams
,
P. T.
,
2012
, “
Two Stage Pyrolysis-Catalytic Gasification of Waste Tyres: Influence of Process Parameters
,”
Appl. Catal., B
,
125
, pp.
136
143
.
38.
Hu
,
Q.
,
Tang
,
Z.
,
Yao
,
D.
,
Yang
,
H.
,
Shao
,
J.
, and
Chen
,
H.
,
2020
, “
Thermal Behavior, Kinetics and Gas Evolution Characteristics for the Co-Pyrolysis of Real-World Plastic and Tyre Wastes
,”
J. Cleaner Prod.
,
260
, p.
121102
.
39.
Liu
,
Q.
,
Wang
,
S.
,
Zheng
,
Y.
,
Luo
,
Z.
, and
Cen
,
K.
,
2008
, “
Mechanism Study of Wood Lignin Pyrolysis by Using TG–FTIR Analysis
,”
J. Anal. Appl. Pyrolysis
,
82
(
1
), pp.
170
177
.
40.
Wang
,
Z.
,
Wu
,
M.
,
Chen
,
G.
,
Zhang
,
M.
,
Sun
,
T.
,
Burra
,
K. G.
,
Guo
,
S.
, et al
,
2023
, “
Co-Pyrolysis Characteristics of Waste Tire and Maize Stalk Using TGA, FTIR and Py-GC/MS Analysis
,”
Fuel
,
337
, p.
127206
.
41.
Li
,
Y.
,
Nishu
,
N.
,
Yellezuome
,
D.
,
Chai
,
M.
,
Li
,
C.
, and
Liu
,
R.
,
2021
, “
Catalytic Pyrolysis of Biomass Over Fe-Modified Hierarchical ZSM-5: Insights Into Mono-Aromatics Selectivity and Pyrolysis Behavior Using Py-GC/MS and TG-FTIR
,”
J. Energy Inst.
,
99
, pp.
218
228
.
42.
Wang
,
Z.
,
Guo
,
S.
,
Chen
,
G.
,
Zhang
,
M.
,
Sun
,
T.
,
Wang
,
Q.
,
Zhu
,
H.
, et al
,
2024
, “
Co-Pyrolysis of Waste Tire With Agricultural and Forestry Residues: Pyrolysis Behavior, Products Distribution and Synergistic Effects
,”
J. Energy Inst.
,
114
, p.
101634
.
43.
Barontini
,
F.
,
Biagini
,
E.
, and
Tognotti
,
L.
,
2021
, “
Influence of Torrefaction on Biomass Devolatilization
,”
ACS Omega
,
6
(
31
), pp.
20264
20278
.
44.
Gan
,
Y. Y.
,
Chen
,
W.-H.
,
Ong
,
H. C.
,
Sheen
,
H.-K.
,
Chang
,
J.-S.
,
Hsieh
,
T.-H.
, and
Ling
,
T. C.
,
2020
, “
Effects of Dry and Wet Torrefaction Pretreatment on Microalgae Pyrolysis Analyzed by TG-FTIR and Double-Shot Py-GC/MS
,”
Energy
,
210
, p.
118579
.
45.
Li
,
L.
,
Huang
,
Y.
,
Zhang
,
D.
,
Zheng
,
A.
,
Zhao
,
Z.
,
Xia
,
M.
, and
Li
,
H.
,
2018
, “
Uncovering Structure–Reactivity Relationships in Pyrolysis and Gasification of Biomass With Varying Severity of Torrefaction
,”
ACS Sustainable Chem. Eng.
,
6
(
5
), pp.
6008
6017
.
You do not currently have access to this content.