A new methodology for CFD simulation of airflow in the human bronchopulmonary tree is presented. The new approach provides a means for detailed resolution of the flow features via three-dimensional Navier–Stokes CFD simulation without the need for full resolution of the entire flow geometry, which is well beyond the reach of available computing power now and in the foreseeable future. The method is based on a finite number of flow paths, each of which is fully resolved, to provide a detailed description of the entire complex small-scale flowfield. A stochastic coupling approach is used for the unresolved flow path boundary conditions, yielding a virtual flow geometry that allows accurate statistical resolution of the flow at all scales for any set of flow conditions. Results are presented for multigenerational lung models based on the Weibel morphology and the anatomical data of Hammersley and Olson (1992, “Physical Models of the Smaller Pulmonary Airways,” J. Appl. Physiol., 72(6), pp. 2402–2414). Validation simulations are performed for a portion of the bronchiole region (generations 4–12) using the flow path ensemble method, and compared with simulations that are geometrically fully resolved. Results are obtained for three inspiratory flowrates and compared in terms of pressure drop, flow distribution characteristics, and flow structure. Results show excellent agreement with the fully resolved geometry, while reducing the mesh size and computational cost by up to an order of magnitude.

1.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Academic
,
New York
.
2.
Horsfield
,
K.
, and
Cumming
,
G.
, 1968, “
Morphology of the Bronchial Tree in Man
,”
J. Appl. Physiol.
8750-7587,
24
(
3
), pp.
373
383
.
3.
Hammersley
,
J.
, and
Olson
,
D.
, 1992, “
Physical Models of the Smaller Pulmonary Airways
,”
J. Appl. Physiol.
8750-7587,
72
(
6
), pp.
2402
2414
.
4.
Hegedüs
,
Cs. J.
,
Balásházy
,
I.
, and
Farkas
,
Á.
, 2004, “
Detailed Mathematical Description of the Geometry of Airway Bifurcations
,”
Respir. Physiol. Neurbiol.
1569-9048,
141
(
1
), pp.
99
114
.
5.
Sauret
,
V.
,
Goatman
,
K. A.
,
Fleming
,
J. S.
, and
Bailey
,
A. G.
, 1999, “
Semi-Automated Tabulation of the 3D Topology and Morphology of Branching Networks Using CT: Application to the Airway Tree
,”
Phys. Med. Biol.
0031-9155,
44
(
7
), pp.
1625
1638
.
6.
Schmidt
,
A.
,
Zidowitz
,
S.
,
Kriete
,
A.
,
Denhard
,
T.
,
Krass
,
S.
, and
Pietgen
,
H. -O.
, 2004, “
A Digital Reference Model of the Human Bronchial Tree
,”
Comput. Med. Imaging Graph.
0895-6111,
28
(
4
), pp.
203
211
.
7.
Kitaoka
,
H.
,
Takaki
,
R.
, and
Suki
,
B.
, 1999, “
A Three Dimensional Model of the Human Airway Tree
,”
J. Appl. Physiol.
8750-7587,
87
(
6
), pp.
2207
2217
.
8.
Tawhai
,
M. H.
, and
Burrowes
,
K. S.
, 2003, “
Developing Integrative Computational Models of Pulmonary Structure
,”
Anat. Rec.
0003-276X,
275B
(
1
), pp.
207
218
.
9.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C.
, 2001, “
Flow Structure and Particle Transport in a Triple Bifurcation Airway Model
,”
ASME J. Fluids Eng.
0098-2202,
123
(
2
), pp.
320
330
.
10.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2002, “
Transient Airflow Structures and Particle Transport in a Sequentially Branching Lung Airway Model
,”
Phys. Fluids
1070-6631,
14
(
2
), pp.
862
880
.
11.
Zhang
,
Z.
,
Kleinstreuer
,
C.
,
Donohue
,
J.
, and
Kim
,
C.
, 2005, “
Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
0021-8502,
36
(
2
), pp.
211
233
.
12.
Liu
,
Y.
,
So
,
R. M. C.
, and
Zhang
,
C. H.
, 2002, “
Modeling the Bifurcating Flow in a Human Lung Airway
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
465
473
.
13.
Longest
,
P. W.
, and
Vinchurkar
,
S.
, 2007, “
Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models With Comparisons to Experimental Data
,”
Med. Eng. Phys.
1350-4533,
29
(
3
), pp.
350
366
.
14.
Soni
,
B.
,
Lindley
,
C.
, and
Thompson
,
D.
, 2009, “
The Combined Effects of Non-Planarity and Asymmetry on Primary and Secondary Flows in the Small Bronchial Tubes
,”
Int. J. Numer. Methods Fluids
0271-2091,
59
(
2
), pp.
117
146
.
15.
Sera
,
T.
,
Fujioka
,
H.
,
Yokota
,
H.
,
Makinouchi
,
A.
,
Himeno
,
R.
,
Schroter
,
R. C.
, and
Tanishita
,
K.
, 2003, “
Three-Dimensional Visualization and Morphometry of Small Airways From Microfocal X-Ray Computed Tomography
,”
J. Biomech.
0021-9290,
36
(
11
), pp.
1587
1594
.
16.
Burton
,
R. T.
,
Isaacs
,
K. K.
,
Fleming
,
J. S.
, and
Martonen
,
T. B.
, 2004, “
Computer Reconstruction of a Human Lung Boundary Model From Magnetic Resonance Images
,”
Respir. Care
0730-8418,
49
(
2
), pp.
180
185
.
17.
van Ertbruggen
,
C.
,
Hirsch
,
C.
, and
Paiva
,
M.
, 2005, “
Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics
,”
J. Appl. Physiol.
8750-7587,
98
(
3
), pp.
970
980
.
18.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2004, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
0021-9991,
198
(
1
), pp.
178
210
.
19.
Guan
,
X.
, and
Martonen
,
T. B.
, 2000, “
Flow Transition in Bends and Applications to Airways
,”
J. Aerosol Sci.
0021-8502,
31
(
7
), pp.
833
847
.
20.
Luo
,
H. Y.
,
Liu
,
Y.
, and
Yang
,
X. L.
, 2007, “
Particle Deposition in Obstructed Airways
,”
J. Biomech.
0021-9290,
40
(
14
), pp.
3096
3104
.
21.
Yang
,
X. L.
,
Liu
,
Y.
,
So
,
R. M. C.
, and
Yang
,
J. M.
, 2006, “
The Effect of Inlet Velocity Profile on the Bifurcation COPD Airway Flow
,”
Comput. Biol. Med.
0010-4825,
36
(
2
), pp.
181
194
.
22.
Nowak
,
N.
,
Kadake
,
P. P.
, and
Annapragada
,
A. V.
, 2003, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
374
390
.
23.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2008, “
Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model
,”
Ann. Biomed. Eng.
0090-6964,
36
(
12
), pp.
2095
2110
.
24.
Ma
,
B.
, and
Lutchen
,
K. R.
, 2006, “
An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics
,”
Ann. Biomed. Eng.
0090-6964,
34
(
11
), pp.
1691
1704
.
25.
Gemci
,
T.
,
Ponyavin
,
V.
,
Chen
,
Y.
,
Chen
,
H.
, and
Collins
,
R.
, 2008, “
Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract
,”
J. Biomech.
0021-9290,
41
(
9
), pp.
2047
2054
.
26.
Hyatt
,
R. E.
, and
Wilcox
,
R. E.
, 1963, “
The Pressure-Flow Relationship of the Intrathoracic Airways in Man
,”
J. Clin. Invest.
0021-9738,
42
, pp.
29
39
.
27.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
28.
Barth
,
T. J.
, and
Jespersen
,
D.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. AIAA-89-0366.
29.
2006,
FLUENT® 6 User’s Guide
,
Fluent, Inc.
,
Lebanon, NH
.
You do not currently have access to this content.