Abstract

Wakes and higher-order turbulence around circular cylinders of different diameters are investigated using particle image velocimetry measurements. The cylinder Reynolds number (Red) is defined by the depth-averaged velocity, cylinder diameter, and kinematic viscosity. The influence of Red on third-order moment of velocity fluctuations, turbulent kinetic energy (TKE) flux, TKE budget, and turbulent length scales are presented. The intermittency factor (IF) and quadrant analysis around the cylinders are discussed for Red values ranging from 12,600 to 21,000. The energy budget mostly near free surface upstream and near-bed downstream is changed due to Red. Stream-wise and transverse TKE fluxes decreased significantly with Red, but not the vertical flux. Stream-wise skewness changed sign from positive to negative at a certain critical distance downstream, while vertical skewness showed reversed effect with Red. Negative stream-wise skewness and positive vertical skewness indicate the occurrence of ejection events. On the downstream, the production and dissipation rates increased with Red, whereas an opposite trend was observed for dissipation only on the upstream. Increase of Red led to an increase in the Kolmogorov length-scale much higher on the upstream than the downstream, whereas it showed depleting effect on Taylor's length-scale on the upstream and an increasing effect on the downstream. Ejection and sweep events were more prominent in the downstream near the cylinder than upstream with higher values of shear stress on the downstream. The sum of the shear stress contributions of all quadrant events increased consistently with an increase in Red near the cylinder.

References

1.
Zdravkovich
,
M. M.
,
1987
, “
The Effects of Interference Between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
(
2
), pp.
239
261
.10.1016/S0889-9746(87)90355-0
2.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders, Vol.1: Fundamentals
,
Oxford University Press
, London, UK.
3.
Richardson
,
J. E.
, and
Panchang
,
V. G.
,
1998
, “
Three-Dimensional Simulation of Scour-Inducing Flow at Bridge Piers
,”
J. Hydraul. Eng.
,
124
(
5
), pp.
530
540
.10.1061/(ASCE)0733-9429(1998)124:5(530)
4.
Dargahi
,
B.
,
1989
, “
The Turbulent Flow Field Around a Circular Cylinder
,”
Exp. Fluids
,
8
(
1–2
), pp.
1
12
.10.1007/BF00203058
5.
Graf
,
W. H.
, and
Yulistiyanto
,
B.
,
1998
, “
Experiments on Flow Around a Cylinder; The Velocity and Vorticity Fields
,”
J. Hydraul. Res.
,
36
(
4
), pp.
637
654
.10.1080/00221689809498613
6.
Price
,
S. J.
,
Sumner
,
D.
,
Smith
,
J. G.
,
Leong
,
K.
, and
Paidoussis
,
M. P.
,
2002
, “
Flow Visualization Around a Circular Cylinder Near to a plane wall
,”
J. Fluids Struct.
,
16
(
2
), pp.
175
191
.10.1006/jfls.2001.0413
7.
Kirkil
,
G.
, and
Constantinescu
,
G.
,
2015
, “
Effects of Cylinder Reynolds Number on the Turbulent Horseshoe Vortex System and Near Wake of a Surface-Mounted Circular Cylinder
,”
Phy. Fluids
,
27
(
7
), pp.
75
102
.
8.
Choi
,
J. H.
, and
Lee
,
S. J.
,
2000
, “
Ground Effect of Flow Around an Elliptic Cylinder in a Turbulent Boundary Layer
,”
J. Fluids Struct.
,
14
(
5
), pp.
697
709
.10.1006/jfls.2000.0290
9.
Johnson
,
K. R.
, and
Ting
,
F. C. K.
,
2003
, “
Measurements of Water Surface Profile and Velocity Field at a Circular Pier
,”
J. Eng. Mech.
,
129
(
5
), pp.
502
513
.10.1061/(ASCE)0733-9399(2003)129:5(502)
10.
Alam
,
M. M.
, and
Zhou
,
Y.
,
2007
, “
Flow Around Two Side-by-Side Closely Spaced Circular Cylinders
,”
J. Fluids Struct.
,
23
(
5
), pp.
799
805
.10.1016/j.jfluidstructs.2006.12.002
11.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2008
, “
Near-Wake Flow Characteristics of a Circular Cylinder Close to a Wall
,”
J. Fluids Struct.
,
24
(
5
), pp.
605
627
.10.1016/j.jfluidstructs.2007.11.001
12.
Sarkar
,
S.
, and
Sarkar
,
S.
,
2010
, “
Vortex Dynamics of a Cylinder Wake in Proximity to a Wall
,”
J. Fluids Struct.
,
26
(
1
), pp.
19
40
.10.1016/j.jfluidstructs.2009.08.003
13.
More
,
B. S.
,
Dutta
,
S.
, and
Gandhi
,
B. K.
,
2020
, “
Flow Around Three Side-by-Side Square Cylinders and the Effect of the Cylinder Oscillation
,”
ASME J. Fluids Eng.
,
142
(
2),
p 021303.10.1115/1.4045206
14.
Ataie-Ashtiani
,
B.
, and
Aslani-Kordkandi
,
A.
,
2013
, “
Flow Field Around Single and Tandem Piers. Flow
,”
Turb. Comb.
,
90
(
3
), pp.
471
490
.10.1007/s10494-012-9427-7
15.
AlQadi
,
I.
,
Al Hazmy
,
M.
,
Al-Bahi
,
A.
, and
Rodi
,
W.
,
2015
, “
Large Eddy Simulation of Flow Past Tandem Cylinders in a Channel
,”
Flow Turb. Comb.
,
95
(
4
), pp.
621
643
.10.1007/s10494-015-9603-7
16.
Schanderl
,
W.
,
Jenssen
,
U.
,
Strobl
,
C.
, and
Manhart
,
M.
,
2017
, “
The Structure and Budget of turbulent kinetic Energy in Front of a Wall-Mounted Cylinder
,”
J. Fluid Mech.
,
827
, pp.
285
321
.10.1017/jfm.2017.486
17.
Schanderl
,
W.
, and
Manhart
,
M.
,
2018
, “
Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow
,”
Flow Turb. Comb.
,
101
(
2
), pp.
499
519
.10.1007/s10494-018-9912-8
18.
Sarkar
,
K.
, and
Mazumder
,
B. S.
,
2018
, “
Higher-Order Moments With Turbulent Length-Scales and Anisotropy Associated With Flow Over Dune Shapes in Tidal Environment
,”
Phys. Fluids
,
30
(
10
), p.
106602
.10.1063/1.5038433
19.
Sharma
,
A.
, and
Kumar
,
B.
,
2018
, “
High-Order Velocity Moments of Turbulent Boundary Layers in Seepage Affected Alluvial Channel
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081204
.10.1115/1.4039253
20.
Raupach
,
M. R.
,
1981
, “
Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
108
, pp.
363
382
.10.1017/S0022112081002164
21.
Adrian
,
R. J.
,
1991
, “
Particle Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
261
304
.10.1146/annurev.fl.23.010191.001401
22.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York.
23.
Novotný
,
J.
, and
Manoch
,
L.
,
2012
, “
The Criterion of Choosing the Proper Seeding Particles
,”
Engg Mech
, 201. Svratka, Czech Republic, May 14–17.
24.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, New York.
25.
dos Santos
,
A. A. C.
,
Childs
,
M.
,
Nguyen
,
T. D.
, and
Hassan
,
Y.
,
2019
, “
Convergence Study and Uncertainty Quantification of Average and Statistical PIV Measurements in a Matched Refractive Index 5 × 5 Rod Bundle With Mixing Vane Spacer Grid
,”
Exp. Therm. Fluid Sciy
,
102
, pp.
215
231
.10.1016/j.expthermflusci.2018.11.009
26.
Calluaud
,
D.
, and
David
,
L.
,
2004
, “
Stereoscopic Particle Image Velocimetry Measurements of the Flow Around a Surface-Mounted Block
,”
Exp. Fluids
,
36
(
1
), pp.
53
61
.10.1007/s00348-003-0628-7
27.
Kähler
,
C. J.
,
Scharnowski
,
S.
, and
Cierpka
,
C.
,
2012
, “
On the Resolution Limit of Digital Particle Image Velocimetry
,”
Exp. Fluids
,
52
(
6
), pp.
1629
1639
.10.1007/s00348-012-1280-x
28.
Coudert
,
S. J.
, and
Schon
,
J. P.
,
2001
, “
Back-Projection Algorithm With Misalignment Corrections for 2D3C Stereoscopic PIV
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1371
1381
.10.1088/0957-0233/12/9/301
29.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
,
Springer
, New York.
30.
Nezu
,
I.
, and
Rodi
,
W.
,
1986
, “
Open-Channel Flow Measurements With a Laser Doppler Anemometer
,”
J. Hydraul. Eng.
,
112
(
5
), pp.
335
355
.10.1061/(ASCE)0733-9429(1986)112:5(335)
31.
Yang
,
S. Q.
,
Tan
,
S. K.
, and
Lim
,
S. Y.
,
2004
, “
Velocity Distribution and Dip-Phenomenon in Smooth Uniform Open Cannel Flows
,”
J. Hydraul. Eng.
,
130
(
12
), pp.
1179
1186
.10.1061/(ASCE)0733-9429(2004)130:12(1179)
32.
Absi
,
R.
,
2011
, “
An Ordinary Differential Equation for Velocity Distribution and Dip-Phenomenon in Open Channel Flows
,”
J. Hydraul. Res.
,
49
(
1
), pp.
82
89
.10.1080/00221686.2010.535700
33.
Maity
,
H.
, and
Mazumder
,
B. S.
,
2014
, “
Experimental Investigation of the Impacts of Coherent Flow Structures Upon Turbulence Properties in Regions of Crescentic Scour
,”
Earth Sur. Proc. Landforms
,
39
(
8
), pp.
995
1013
.10.1002/esp.3496
34.
Chiew
,
Y. M.
, and
Melville
,
B. W.
,
1987
, “
Local Scour Around Bridge Piers
,”
J. Hydraul. Res.
,
25
(
1
), pp.
15
26
.10.1080/00221688709499285
35.
Shen
,
H. W.
,
Schneider
,
V. R.
, and
Karaki
,
S.
,
1969
, “
Local Scour Around Bridge Piers
,”
J. Hydraul. Div.
,
95
(
6
), pp.
1919
1940
.10.1061/JYCEAJ.0002197
36.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinders Volume 2: Applications
,
Oxford University Press
,
New York
.
37.
Akilli
,
H.
, and
Rockwell
,
D.
,
2002
, “
Vortex Formation From a Cylinder in Shallow Water
,”
Phys. Fluids
,
14
(
9
), pp.
2957
2967
.10.1063/1.1483307
38.
Halse
,
K. H.
,
1997
,
On Vortex Shedding and Prediction of Vortex-Induced Vibrations of Circular Cylinders
,
Norwegian University Science and Technology
, Oslo, Norway.
39.
Ettema
,
R.
,
Kirkil
,
G.
, and
Muste
,
M.
,
2006
, “
Similitude of Large-Scale Turbulence in Experiments on Local Scour at Cylinders
,”
J. Hydr. Eng.
,
132
(
1
), pp.
33
40
.10.1061/(ASCE)0733-9429(2006)132:1(33)
40.
Bennett
,
S. J.
, and
Best
,
J. L.
,
1995
, “
Mean Flow and Turbulence Structure Over Fixed, Two‐Dimensional Dunes: Implications for Sediment Transport and Bedform Stability
,”
Sedimentology
,
42
(
3
), pp.
491
513
.10.1111/j.1365-3091.1995.tb00386.x
41.
Kwoll
,
E.
,
Venditti
,
J. G.
,
Bradley
,
R. W.
, and
Winter
,
C.
,
2016
, “
Flow Structure and Resistance Over Subaquaeous High-and Low-Angle Dunes
,”
J. Geophys. Res. Earth Surf.
,
121
(
3
), pp.
545
564
.10.1002/2015JF003637
42.
Dey
,
S.
, and
Das
,
R.
,
2012
, “
Gravel-Bed Hydrodynamics: Double-Averaging Approach
,”
J. Hydr. Eng.
,
138
(
8
), pp.
707
725
.10.1061/(ASCE)HY.1943-7900.0000554
43.
Hanmaiahgari
,
P. R.
,
Roussinova
,
V.
, and
Balachandar
,
R.
,
2017
, “
Turbulence Characteristics of Flow in an Open Channel With Temporally Varying Mobile Bedforms
,”
J. Hydr. Hydromech.
,
65
(
1
), pp.
35
48
.10.1515/johh-2016-0044
44.
Bhaganagar
,
K.
,
Kim
,
J.
, and
Coleman
,
G.
,
2004
, “
Effect of Roughness on Wall-Bounded Turbulence
,”
Flow Turb. Comb.
,
72
(
2–4
), pp.
463
492
.10.1023/B:APPL.0000044407.34121.64
45.
Jong
,
J. D.
,
Cao
,
L.
,
Woodward
,
S. H.
,
Salazar
,
J. P. L. C.
,
Collins
,
L. R.
, and
Meng
,
H.
,
2009
, “
Dissipation Rate Estimation From PIV in Zero-Mean Isotropic Turbulence
,”
Exp. Fluids
,
46
(
3
), pp.
499
515
.10.1007/s00348-008-0576-3
46.
Barman
,
K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2017
, “
Higher-Order Turbulence Statistics of Wave-Current Flow Over a Submerged Hemisphere
,”
Fluid Dyn. Res
,
49
(
2
), p.
25504
.10.1088/1873-7005/aa515d
47.
Venditti
,
J. G.
, and
Bennett
,
S. J.
,
2000
, “
Spectral Analysis of Turbulent Flow and Suspended Sediment Transport Over Fixed Dunes
,”
J. Geophys. Res. Oceans
,
105
(
C9
), pp.
22035
22047
.10.1029/2000JC900094
48.
Cimarelli
,
A.
,
Leonforte
,
A.
,
Angelis
,
E. D.
,
Crivellini
,
A.
, and
Angeli
,
D.
,
2019
, “
On Negative Turbulence Production Phenomena in the Shear Layer of Separating and Reattaching Flows
,”
Phys. Lett. A.
,
383
(
10
), pp.
1019
1026
.10.1016/j.physleta.2018.12.026
49.
Gayen
,
B.
, and
Sarkar
,
S.
,
2011
, “
Negative Turbulent Production During Flow Reversal in a Stratified Oscillating Boundary Layer on a Sloping Bottom
,”
Phys. Fluids
,
23
(
10
), p.
101703
.10.1063/1.3651359
50.
Nakagawa
,
H.
, and
Nezu
,
I.
,
1977
, “
Prediction of the Contributions to the Reynolds Stress From Bursting Events in Open-Channel Flows
,”
J. Fluid Mech.
,
80
(
1
), pp.
99
128
.10.1017/S0022112077001554
51.
Fincham
,
A. M.
,
Maxworthy
,
T.
, and
Spedding
,
G. R.
,
1996
, “
Energy Dissipation and Vortex Structure in Freely Decaying, Stratified Grid Turbulence
,”
Dyn. Atmospheres Oceans
,
23
(
1–4
), pp.
155
169
.10.1016/0377-0265(95)00415-7
52.
Tanaka
,
T.
, and
Eaton
,
J. K.
,
2007
, “
A Correction Method for Measuring Turbulence Kinetic Energy Dissipation Rate by PIV
,”
Exp. Fluids
,
42
(
6
), pp.
893
902
.10.1007/s00348-007-0298-y
53.
Xu
,
D.
, and
Chen
,
J.
,
2013
, “
Accurate Estimate of Turbulent Dissipation Rate Using PIV Data
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
662
672
.10.1016/j.expthermflusci.2012.09.006
54.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
55.
Li
,
D.
, and
Katul
,
G. G.
,
2017
, “
On the Linkage Between the k-5/3 Spectral and k-7/3 Cospectral Scaling in high-Reynolds Number Turbulent Boundary Layers
,”
Phys. Fluids
,
29
(
6
), p.
65108
.10.1063/1.4986068
56.
Parsheh
,
M.
,
Sotiropoulos
,
F.
, and
Porte-Agel
,
F.
,
2010
, “
Estimation of Power Spectra of Acoustic Doppler-Velocimetry Data Contaminated With Intermittent Spikes
,”
J. Hydraul. Eng.
, 136(6), pp.
368
378
.https://doi.org/10.1061/(ASCE)HY.1943-7900.0000202
57.
Rastan
,
M. R.
,
Sohankar
,
A.
, and
Alam
,
M. M.
,
2017
, “
Low-Reynolds-Number Flow Around a Wall-Mounted Square Cylinder: Flow Structures and Onset of Vortex Shedding
,”
Phys. Fluids
,
29
(
10
), p.
103601
10.1063/1.4989745
58.
Stull
,
R. B.
,
2012
,
An Introduction to Boundary Layer Meteorology
,
Kluwer Academic Publishers, London, UK.
59.
Levi
,
E. A.
,
1983
, “
Universal Strouhal Law
,”
J. Eng. Mech.
,
109
(
3
), pp.
718
727
.10.1061/(ASCE)0733-9399(1983)109:3(718)
60.
Katopodes
,
N. D.
,
2019
,
Free-Surface Flow: Shallow Water Dynamics
,
Butterworth-Heinemann
, Oxford, UK.
61.
Ünal
,
U. O.
, and
Atlar
,
M.
,
2010
, “
An Experimental Investigation Into the Effect of Vortex Generators on the Near-Wake Flow of a Circular Cylinder
,”
Exp. Fluids
,
48
(
6
), pp.
1059
1079
.10.1007/s00348-009-0791-6
62.
Morton
,
C.
, and
Yarusevych
,
S.
,
2014
, “
Vortex Dynamics in the Turbulent Wake of a Single Step Cylinder
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031204
.10.1115/1.4026196
63.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
10
(
3
), pp.
345
356
.10.1017/S0022112061000950
64.
Lu
,
S. S.
, and
Willmarth
,
W. W.
,
1973
, “
Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
60
(
3
), pp.
481
511
.10.1017/S0022112073000315
65.
Katul
,
G. G.
,
Angelini
,
C.
,
Canditiis
,
D. D.
,
Amato
,
U.
,
Vidakovic
,
B.
, and
Albertson
,
J. D.
,
2003
, “
Are the Effects of Large Scale Flow Conditions Really Lost Through the Turbulent Cascade?
,”
Geophys. Res. Lett.
,
30
(
4
), p.
1164
.10.1029/2002GL015284
66.
Mazumder
,
B. S.
,
Pal
,
D. K.
,
Ghoshal
,
K.
, and
Ojha
,
S. P.
,
2009
, “
Turbulence Statistics of Flow Over Isolated Scalene and Isosceles Triangular-Shaped Bedforms
,”
J. Hydraul. Res
,
47
(
5
), pp.
626
637
.10.3826/jhr.2009.3397
67.
Ojha
,
S. P.
,
Mazumder
,
B. S.
,
Carstensen
,
S.
, and
Fredsoe
,
J.
,
2019
, “
Externally Generated Turbulence by a Vertically Oscillating Grid Plate and Its Impact on Sediment Transport Rate
,”
Coastal Eng. J.
,
61
(
4
), pp.
444
459
.10.1080/21664250.2019.1619251
68.
Grass
,
A. J.
,
1971
, “
Structural Features of Turbulent Flow Over Smooth and Rough Boundaries
,”
J. Fluid Mech.
,
50
(
2
), pp.
233
255
.10.1017/S0022112071002556
You do not currently have access to this content.