Abstract

Particle image velocimetry (PIV) technology, which performs the full-field velocity measurement on the laser plane, plays a crucial role in studying complex flow structures in multistage centrifugal pumps. In particle image cross-correlation analysis, the flow field could be corrupted with outliers due to the background Gaussian imaging noise, insufficient illumination caused by optical obstruction, and particle slip caused by centrifugal forces. In this study, we propose a patch-based flow field reconstruction (PFFR) method for PIV data of multistage centrifugal pumps. Since natural images contain a large number of mutually similar patches at different locations, the instantaneous PIV data with a symmetric property is segmented to multiple patches. The flow field reconstruction is achieved by low-rank sparse decomposition, which exploits the information about similar flow characteristics present in patches. Furthermore, we illustrated the proposed PFFR on a large eddy simulation vorticity field and experimental data of a multistage centrifugal pump to evaluate its effectiveness. We also performed the three other data analysis methods. The results show that the proposed PFFR has a strong reconstruction ability to improve data reliability for the instantaneous flow field with outliers. When the outliers account for 20% of the total flow vectors, the average normalized root-mean-square error of PFFR-reconstructed data is 0.143, which is lower than the three other data methods by 21.9%–48.1%. The structural similarity is 0.702, which is higher than the three other data methods by 2.1%–9%.

References

1.
Shim
,
H.
,
Kim
,
K.
, and
Choi
,
Y.
,
2018
, “
Three-Objective Optimization of a Centrifugal Pump to Reduce Flow Recirculation and Cavitation
,”
ASME. J. Fluids Eng.
,
140
(
9
), p.
091202
.10.1115/1.4039511
2.
Zhang
,
Z. C.
,
Chen
,
H. X.
,
Yin
,
J. L.
,
Ma
,
Z.
,
Gu
,
Q.
,
Lu
,
J. Q.
, and
Liu
,
H.
,
2021
, “
Unsteady Flow Characteristics in Centrifugal Pump Based on Proper Orthogonal Decomposition Method
,”
Phys. Fluids
,
33
(
7
), p.
075122
.10.1063/5.0058553
3.
Cui
,
B.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2020
, “
Analysis of the Pressure Pulsation and Vibration in a Low-Specific-Speed Centrifugal Pump
,”
ASME. J. Fluids Eng.
,
143
(
2
), p.
021201
.10.1115/1.4048691
4.
Zhang
,
N.
,
Zheng
,
F. K.
,
Liu
,
X. K.
,
Gao
,
B.
, and
Li
,
G. P.
,
2020
, “
Unsteady Flow Fluctuations in a Centrifugal Pump Measured by Laser Doppler Anemometry and Pressure Pulsation
,”
Phys. Fluids
,
32
(
12
), p.
125108
.10.1063/5.0029124
5.
Tong
,
Z. M.
,
Xin
,
J. G.
,
Tong
,
S. G.
,
Yang
,
Z. Q.
,
Zhao
,
J. Y.
, and
Mao
,
J. H.
,
2020
, “
Internal Flow Structure, Fault Detection, and Performance Optimization of Centrifugal Pumps
,”
J. Zhejiang Univ. Sci. A
,
21
(
2
), pp.
85
117
.10.1631/jzus.A1900608
6.
Hofer
,
D.
,
Krieger
,
M.
, and
Kirchhofer
,
M.
,
2021
, “
High-Resolution 2.5D Particle Image Velocimetry Measurements of the Flow Fields Generated by Small Fans
,”
ASME. J. Fluids Eng.
,
143
(
12
), p.
121101
.10.1115/1.4051544
7.
Tong
,
Z. M.
,
Yang
,
Z. Q.
,
Huang
,
Q.
, and
Yao
,
Q.
,
2022
, “
Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition
,”
Energies
,
15
(
5
), p.
1905
.10.3390/en15051905
8.
Scherl
,
I.
,
Strom
,
B.
,
Shang
,
J. K.
,
Williams
,
O.
,
Polagye
,
B. L.
, and
Brunton
,
S. L.
,
2020
, “
Robust Principal Component Analysis for Modal Decomposition of Corrupt Fluid Flows
,”
Phys. Rev. Fluids
,
5
(
5
), p.
054401
.10.1103/PhysRevFluids.5.054401
9.
Masullo
,
A.
, and
Theunissen
,
R.
,
2016
, “
Adaptive Vector Validation in Image Velocimetry to Minimise the Influence of Outlier Clusters
,”
Exp. Fluids
,
57
(
3
), p.
33
.10.1007/s00348-015-2110-8
10.
Shinneeb
,
A. M.
,
Bugg
,
J. D.
, and
Balachandar
,
R.
,
2004
, “
Variable Threshold Outlier Identification in PIV Data
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
1722
1732
.10.1088/0957-0233/15/9/008
11.
Wang
,
H. P.
,
Gao
,
Q.
,
Feng
,
L. H.
,
Wei
,
R. J.
, and
Wang
,
J. J.
,
2015
, “
Proper Orthogonal Decomposition Based Outlier Correction for PIV Data
,”
Exp. Fluids
,
56
(
2
), p.
43
.10.1007/s00348-015-1894-x
12.
Westerweel
,
J.
,
1994
, “
Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data
,”
Exp. Fluids
,
16-16
(
3–4
), pp.
236
247
.10.1007/BF00206543
13.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.10.1007/s00348-005-0016-6
14.
Gunes
,
H.
, and
Ulrich
,
R.
,
2007
, “
Spatial Resolution Enhancement/Smoothing of Stereo-Particle-Image-Velocimetry Data Using Proper-Orthogonal-Decomposition-Based and Kriging Interpolation Methods
,”
Phys. Fluids
,
19
(
6
), p.
064101
.10.1063/1.2740710
15.
Gunes
,
H.
, and
Ulrich
,
R.
,
2008
, “
On the Use of Kriging for Enhanced Data Reconstruction in a Separated Transitional Flat-Plate Boundary Layer
,”
Phys. Fluids
,
20
(
10
), p.
104109
.10.1063/1.3003069
16.
Casa
,
L. D. C.
, and
Krueger
,
P. S.
,
2013
, “
Radial Basis Function Interpolation of Unstructured, Three-Dimensional, Volumetric Particle Tracking Velocimetry Data
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065304
.10.1088/0957-0233/24/6/065304
17.
Suzuki
,
T.
, and
Yamamoto
,
F.
,
2015
, “
Hierarchy of Hybrid Unsteady-Flow Simulations Integrating Time-Resolved PTV With DNS and Their Data-Assimilation Capabilities
,”
Fluid Dyn. Res.
,
47
(
5
), p.
051407
.10.1088/0169-5983/47/5/051407
18.
Wang
,
H. P.
,
Gao
,
Q.
,
Wang
,
S. Z.
,
Li
,
Y. H.
,
Wang
,
Z. Y.
, and
Wang
,
Z. Z.
,
2018
, “
Error Reduction for Time-Resolved PIV Data Based on Navier-Stokes Equations
,”
Exp. Fluids
,
59
(
10
), p.
149
.10.1007/s00348-018-2605-1
19.
Vlasenko
,
A.
,
Steele
,
E. C. C.
, and
Nimmo-Smith
,
W. A. M.
,
2015
, “
A Physics-Enabled Flow Restoration Algorithm for Sparse PIV and PTV Measurements
,”
Meas. Sci. Technol.
,
26
(
6
), p.
065301
.10.1088/0957-0233/26/6/065301
20.
Liang
,
D. F.
,
Jiang
,
C. B.
, and
Li
,
Y. L.
,
2003
, “
Cellular Neural Network to Detect Spurious Vectors in PIV Data
,”
Exp. Fluids
,
34
(
1
), pp.
52
62
.10.1007/s00348-002-0530-8
21.
Wen
,
X.
,
Li
,
Z. Y.
,
Peng
,
D.
,
Zhou
,
W. W.
, and
Liu
,
Y. Z.
,
2019
, “
Missing Data Recovery Using Data Fusion of Incomplete Complementary Data Sets: A Particle Image Velocimetry Application
,”
Phys. Fluids
,
31
(
2
), p.
25105
.10.1063/1.5079896
22.
Griffin
,
J.
,
Schultz
,
T.
,
Holman
,
Y.
,
Ukeiley
,
L. S.
, and
Cattafesta
, and
L. N.
, III
,
2010
, “
Application of Multivariate Outlier Detection to Fluid Velocity Measurements
,”
Exp. Fluids
,
49
(
1
), pp.
305
317
.10.1007/s00348-010-0875-3
23.
Tang
,
C. X.
,
Sun
,
W. F.
,
He
,
H. Y.
,
Li
,
H. Q.
, and
Li
,
E. B.
,
2017
, “
Spurious PIV Vector Detection and Correction Using a Penalized Least-Squares Method With Adaptive Order Differentials
,”
Exp. Fluids
,
58
(
7
), p.
81
.10.1007/s00348-017-2350-x
24.
Garcia
,
D.
,
2011
, “
A Fast All-in-One Method for Automated Post-Processing of PIV Data
,”
Exp. Fluids
,
50
(
5
), pp.
1247
1259
.10.1007/s00348-010-0985-y
25.
Raben
,
S. G.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2012
, “
Adaptive Gappy Proper Orthogonal Decomposition for Particle Image Velocimetry Data Reconstruction
,”
Meas. Sci. Technol.
,
23
(
2
), p.
025303
.10.1088/0957-0233/23/2/025303
26.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2011
, “
Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder Under Synthetic Jet Control
,”
Phys. Fluids
,
23
(
1
), p.
014106
.10.1063/1.3540679
27.
Wright
,
J.
,
Yang
,
A. Y.
,
Ganesh
,
A.
, and
Sastry
,
S. S.
,
2009
, “
Robust Face Recognition Via Sparse Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
31
(
2
), pp.
210
227
.10.1109/TPAMI.2008.79
28.
He
,
C. X.
, and
Liu
,
Y. Z.
,
2020
, “
Time-Resolved Reconstruction of Turbulent Flows Using Linear Stochastic Estimation and Sequential Data Assimilation
,”
Phys. Fluids
,
32
(
7
), p.
075106
.10.1063/5.0014249
29.
Wright
,
J.
, and
Ma
,
Y.
,
2009
, “
Dense Error Correction Via l1-Minimization
,”
IEEE
International Conference on Acoustics, Speech and Signal Processing
, Taipei, China, Apr. 19–24, pp.
3033
3036
.10.1109/ICASSP.2009.4960263
30.
Li
,
Y.
,
Liu
,
G. C.
,
Liu
,
Q. S.
,
Sun
,
Y. B.
, and
Chen
,
S. Y.
,
2019
, “
Moving Object Detection Via Segmentation and Saliency Constrained RPCA
,”
Neurocomputing
,
323
, pp.
352
362
.10.1016/j.neucom.2018.10.012
31.
Jin
,
K. H.
, and
Ye
,
J. C.
,
2015
, “
Sparse + Low Rank Decomposition of Annihilating Filter-Based Hankel Matrix for Impulse Noise Removal
,”
Comput. Sci.
, pp.
1388
1391
.
32.
Luan
,
X.
,
Fang
,
B.
,
Liu
,
L. H.
,
Yang
,
W. B.
, and
Qian
,
J. Y.
,
2014
, “
Extracting Sparse Error of Robust PCA for Face Recognition in the Presence of Varying Illumination and Occlusion
,”
Patt. Recognit.
,
47
(
2
), pp.
495
508
.10.1016/j.patcog.2013.06.031
33.
Gao
,
C.
,
Meng
,
D.
,
Yang
,
Y.
,
Wang
,
Y.
,
Zhou
,
X.
, and
Hauptmann
,
A. G.
,
2013
, “
Infrared Patch-Image Model for Small Target Detection in a Single Image
,”
IEEE Trans. Image Process.
,
22
(
12
), pp.
4996
5009
.10.1109/TIP.2013.2281420
34.
Gu
,
S. H.
,
Zhang
,
L.
,
Zuo
,
W.
, and
Feng
,
X.
,
2014
, “
Weighted Nuclear Norm Minimization With Application to Image Denoising
,”
IEEE Conference on Computer Vision and Pattern Recognition (Cvpr)
, Columbus, OH, June 23–28, pp.
2862
2869
.10.1109/CVP R.2014.366
35.
Heffron
,
A. P.
,
Williams
,
J. J.
, and
Avital
,
E. J.
,
2021
, “
Large Eddy Simulation of Microvortex Generators in a Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051208
.10.1115/1.4049817
36.
Tong
,
Z. M.
,
Xin
,
J. G.
, and
Ling
,
C. Z.
,
2021
, “
Many-Objective Hybrid Optimization Method for Impeller Profile Design of Low Specific Speed Centrifugal Pump in District Energy Systems
,”
Sustainability
,
13
(
19
), p.
10537
.10.3390/su131910537
37.
Tong
,
Z. M.
,
Yang
,
Q.
,
Tong
,
S. G.
, and
Chen
,
X.
,
2022
, “
Two-Stage Thermal-Hydraulic Optimization for Pillow Plate Heat Exchanger With Recirculation Zone Parameterization
,”
Appl. Therm. Eng.
,
215
, p.
119033
.10.1016/j.applthermaleng.2022.119033
You do not currently have access to this content.