Abstract

The size of a bumblebee relative to its wing span would suggest that flight is not possible according to the conventional aerodynamic theories, yet nature shows that not to be true, hence the bumblebee paradox. Bumblebee wings have venations that create corrugations, with their forewing and hindwing connected with a hook-like structure, known as a hamulus. Previous investigations of bumblebee flight modeled wings as smooth surfaces or neglected their accurate morphological representation of corrugation or used a simplified body. To address these shortcomings, this work explores the significance of vein corrugation and body on lift and thrust, and morphological importance of hindwing and forewing in flapping flight. Computational fluid dynamics simulations were used to analyze an anatomically accurate bee wing and body for hovering and forward speeds. Flow analysis of corrugated and smooth wing models revealed that corrugation significantly enhanced lift by 14%. With increasing speed, the hindwing increased lift from 14% to 38% due to the combined camber created by the forewing and hindwing. A notable feature was that the leading edge vortex did not change in size when the hindwing was removed, therefore forewing pressure remained the same as when coupled with hindwing during downstroke. When the bee body was included in the model, the pressure decreased locally between the wing root to 25% of the wingspan on the dorsal side, causing lift for the corrugated model to increase by 11%. The study demonstrates the importance of accurately modeling wing corrugation and bee body in flapping flight aerodynamics to unravel the true load-lifting capacity of bumblebees.

References

1.
Bai
,
P.
,
Cui
,
E.
,
Li
,
F.
,
Zhou
,
W.
, and
Chen
,
B.
,
2007
, “
A New Bionic Mav's Flapping Motion Based on Fruit Fly Hovering at Low Reynolds Number
,”
Acta Mech. Sin.
,
23
(
5
), pp.
485
493
.10.1007/s10409-007-0102-5
2.
Bandyopadhyay
,
P. R.
,
2009
, “
Swimming and Flying in Nature–the Route Toward Applications: The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031801
.10.1115/1.3063687
3.
Shyy
,
W.
,
Aono
,
H.
,
Chimakurthi
,
S.
,
Trizila
,
P.
,
Kang
,
C.-K.
,
Cesnik
,
C.
, and
Liu
,
H.
,
2010
, “
Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
46
(
7
), pp.
284
327
.10.1016/j.paerosci.2010.01.001
4.
Zheng
,
Y.
,
Qu
,
Q.
,
Liu
,
P.
, and
Hu
,
T.
,
2022
, “
Ground Effect of a Two-Dimensional Flapping Wing Hovering in Inclined Stroke Plane
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
111206
.10.1115/1.4054739
5.
Mountcastle
,
A. M.
,
Ravi
,
S.
, and
Combes
,
S. A.
,
2015
, “
Nectar Vs. pollen Loading Affects the Tradeoff Between Flight Stability and Maneuverability in Bumblebees
,”
Proc. Natl. Acad. Sci.
,
112
(
33
), pp.
10527
10532
.10.1073/pnas.1506126112
6.
Amador
,
G. J.
,
Matherne
,
M.
,
Waller
,
D.
,
Mathews
,
M.
,
Gorb
,
S. N.
, and
Hu
,
D. L.
,
2017
, “
Honey Bee Hairs and Pollenkitt Are Essential for Pollen Capture and Removal
,”
Bioinspiration Biomimetics
,
12
(
2
), p.
026015
.10.1088/1748-3190/aa5c6e
7.
Bhat
,
S. S.
,
Zhao
,
J.
,
Sheridan
,
J.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
,
2019
, “
Aspect Ratio Studies on Insect Wings
,”
Phys. Fluids
,
31
(
12
), p.
121301
.10.1063/1.5129191
8.
Ellington
,
C. P.
,
van den Berg
,
C.
,
Willmott
,
A. P.
, and
Thomas
,
A. L. R.
,
1996
, “
Leading-Edge Vortices in Insect Flight
,”
Nature
,
384
(
6610
), pp.
626
630
.10.1038/384626a0
9.
Srygley
,
R. B.
, and
Thomas
,
A. L. R.
,
2002
, “
Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies
,”
Nature
,
420
(
6916
), pp.
660
664
.10.1038/nature01223
10.
Lehmann
,
F.-O.
,
2004
, “
The Mechanisms of Lift Enhancement in Insect Flight
,”
Naturwissenschaften
,
91
(
3
), pp.
101
122
.10.1007/s00114-004-0502-3
11.
Bomphrey
,
R. J.
,
Lawson
,
N. J.
,
Harding
,
N. J.
,
Taylor
,
G. K.
, and
Thomas
,
A. L. R.
,
2005
, “
The Aerodynamics of Manduca Sexta: Digital Particle Image Velocimetry Analysis of the Leading-Edge Vortex
,”
J. Exp. Biol.
,
208
(
6
), pp.
1079
1094
.10.1242/jeb.01471
12.
Bomphrey
,
R. J.
,
2006
, “
Insects in Flight: Direct Visualization and Flow Measurements
,”
Bioinspiration Biomimetics
,
1
(
4
), pp.
S1
S9
.10.1088/1748-3182/1/4/S01
13.
Dudley
,
R.
, and
Ellington
,
C.
,
1990
, “
Mechanics of Forward Flight in Bumblebees: I. Kinematics and Morphology
,”
J. Exp. Biol.
,
148
(
1
), pp.
19
52
.10.1242/jeb.148.1.19
14.
Wu
,
J.
, and
Sun
,
M.
,
2005
, “
Unsteady Aerodynamic Forces and Power Requirements of a Bumblebee in Forward Flight
,”
Acta Mech. Sin.
,
21
(
3
), pp.
207
217
.10.1007/s10409-005-0039-5
15.
Bomphrey
,
R. J.
,
Taylor
,
G. K.
, and
Thomas
,
A. L.
,
2009
, “
Smoke Visualization of Free-Flying Bumblebees Indicates Independent Leading-Edge Vortices on Each Wing Pair
,”
Exp. Fluids
,
46
(
5
), pp.
811
821
.10.1007/s00348-009-0631-8
16.
Meng
,
X.
, and
Sun
,
M.
,
2011
, “
Aerodynamic Effects of Corrugation in Flapping Insect Wings in Forward Flight
,”
J. Bionic Eng.
,
8
(
2
), pp.
140
150
.10.1016/S1672-6529(11)60015-2
17.
Engels
,
T.
,
Kolomenskiy
,
D.
,
Schneider
,
K.
,
Farge
,
M.
,
Lehmann
,
F.-O.
, and
Sesterhenn
,
J.
,
2018
, “
Helical Vortices Generated by Flapping Wings of Bumblebees
,”
Fluid Dyn. Res.
,
50
(
1
), p.
011419
.10.1088/1873-7005/aa908f
18.
Liang
,
B.
, and
Sun
,
M.
,
2013
, “
Aerodynamic Interactions Between Wing and Body of a Model Insect in Forward Flight and Maneuvers
,”
J. Bionic Eng.
,
10
(
1
), pp.
19
27
.10.1016/S1672-6529(13)60195-X
19.
Liu
,
G.
,
Dong
,
H.
, and
Li
,
C.
,
2016
, “
Vortex Dynamics and New Lift Enhancement Mechanism of Wing–Body Interaction in Insect Forward Flight
,”
J. Fluid Mech.
,
795
, pp.
634
651
.10.1017/jfm.2016.175
20.
Wang
,
J.
,
Ren
,
Y.
,
Li
,
C.
, and
Dong
,
H.
,
2019
, “
Computational Investigation of Wing-Body Interaction and Its Lift Enhancement Effect in Hummingbird Forward Flight
,”
Bioinspiration Biomimetics
,
14
(
4
), p.
046010
.10.1088/1748-3190/ab2208
21.
Xiong
,
Y.
, and
Sun
,
M.
,
2008
, “
Dynamic Flight Stability of a Bumblebee in Forward Flight
,”
Acta Mech. Sin.
,
24
(
1
), pp.
25
36
.10.1007/s10409-007-0121-2
22.
Chen
,
D.
,
Kolomenskiy
,
D.
,
Nakata
,
T.
, and
Liu
,
H.
,
2017
, “
Forewings Match the Formation of Leading-Edge Vortices and Dominate Aerodynamic Force Production in Revolving Insect Wings
,”
Bioinspiration Biomimetics
,
13
(
1
), p.
016009
.10.1088/1748-3190/aa94d7
23.
Tobing
,
S.
,
Young
,
J.
, and
Lai
,
J.
,
2017
, “
Effects of Wing Flexibility on Bumblebee Propulsion
,”
J. Fluids Struct.
,
68
, pp.
141
157
.10.1016/j.jfluidstructs.2016.10.005
24.
Buckholz
,
R. H.
,
1986
, “
The Functional Role of Wing Corrugations in Living Systems
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
93
97
.10.1115/1.3242550
25.
Brandt
,
J.
,
Doig
,
G.
, and
Tsafnat
,
N.
,
2015
, “
Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing
,”
PLoS One
,
10
(
5
), p.
e0124824
.10.1371/journal.pone.0124824
26.
Meng
,
X. G.
,
Xu
,
L.
, and
Sun
,
M.
,
2011
, “
Aerodynamic Effects of Corrugation in Flapping Insect Wings in Hovering Flight
,”
J. Exp. Biol.
,
214
(
3
), pp.
432
444
.10.1242/jeb.046375
27.
Du
,
G.
, and
Sun
,
M.
,
2012
, “
Aerodynamic Effects of Corrugation and Deformation in Flapping Wings of Hovering Hoverflies
,”
J. Theor. Biol.
,
300
, pp.
19
28
.10.1016/j.jtbi.2012.01.010
28.
Feaster
,
J.
,
Battaglia
,
F.
, and
Bayandor
,
J.
,
2017
, “
A Computational Study on the Influence of Insect Wing Geometry on Bee Flight Mechanics
,”
Biol. Open
,
6
(
12
), pp.
1784
1795
.10.1242/bio.024612
29.
Barnes
,
C. J.
, and
Visbal
,
M. R.
,
2013
, “
Numerical Exploration of the Origin of Aerodynamic Enhancements in [Low-Reynolds Number] Corrugated Airfoils
,”
Phys. Fluids
,
25
(
11
), p.
115106
.10.1063/1.4832655
30.
Meng
,
X. G.
, and
Sun
,
M.
,
2013
, “
Aerodynamic Effects of Wing Corrugation at Gliding Flight at Low Reynolds Numbers
,”
Phys. Fluids
,
25
(
7
), p.
071905
.10.1063/1.4813804
31.
Chen
,
Y.
, and
Skote
,
M.
,
2016
, “
Gliding Performance of 3-D Corrugated Dragonfly Wing With Spanwise Variation
,”
J. Fluids Struct.
,
62
, pp.
1
13
.10.1016/j.jfluidstructs.2015.12.012
32.
Chitsaz
,
N.
,
Siddiqui
,
K.
,
Marian
,
R.
, and
Chahl
,
J.
,
2021
, “
Numerical and Experimental Analysis of Three-Dimensional Microcorrugated Wing in Gliding Flight
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011205
.10.1115/1.4051649
33.
Dudley
,
R.
, and
Ellington
,
C.
,
1990
, “
Mechanics of Forward Flight in Bumblebees: II. Quasi-Steady Lift and Power Requirements
,”
J. Exp. Biol.
,
148
(
1
), pp.
53
88
.10.1242/jeb.148.1.53
34.
Capinera
,
J. L.
,
2008
,
Encyclopedia of Entomology
,
Springer Science & Business Media
, Heidelberg, Germany.
35.
Dickinson
,
M. H.
,
Lehmann
,
F.-O.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
.10.1126/science.284.5422.1954
36.
Wang
,
Z. J.
,
Birch
,
J. M.
, and
Dickinson
,
M. H.
,
2004
, “
Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations Vs Robotic Wing Experiments
,”
J. Exp. Biol.
,
207
(
3
), pp.
449
460
.10.1242/jeb.00739
37.
Birch
,
J. M.
,
Dickson
,
W. B.
, and
Dickinson
,
M. H.
,
2004
, “
Force Production and Flow Structure of the Leading Edge Vortex on Flapping Wings at High and Low Reynolds Numbers
,”
J. Exp. Biol.
,
207
(
7
), pp.
1063
1072
.10.1242/jeb.00848
38.
Dadashi
,
S.
,
Feaster
,
J.
,
Bayandor
,
J.
,
Battaglia
,
F.
, and
Kurdila
,
A. J.
,
2016
, “
Identification and Adaptive Control of History Dependent Unsteady Aerodynamics for a Flapping Insect Wing
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1405
1421
.10.1007/s11071-016-2768-3
39.
ANSYS
,
2019
,
Fluent Theory Guide Release
, Vol.
19
,
ANSYS
,
Canonsburg, PA
.
40.
Sun
,
M.
, and
Tang
,
J.
,
2002
, “
Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion
,”
J. Exp. Biol.
,
205
(
1
), pp.
55
70
.10.1242/jeb.205.1.55
41.
Kweon
,
J.
, and
Choi
,
H.
,
2010
, “
Sectional Lift Coefficient of a Flapping Wing in Hovering Motion
,”
Phys. Fluids
,
22
(
7
), p.
071703
.10.1063/1.3471593
42.
Dai
,
H.
,
Luo
,
H.
, and
Doyle
,
J. F.
,
2012
, “
Dynamic Pitching of an Elastic Rectangular Wing in Hovering Motion
,”
J. Fluid Mech.
,
693
, pp.
473
499
.10.1017/jfm.2011.543
43.
Lee
,
H. K.
,
Jang
,
J. W.
,
Wang
,
J. Y.
,
Son
,
Y. W.
, and
Lee
,
S. H.
,
2019
, “
Comparison of Cicada Hindwings With Hindwing-Less Drosophila for Flapping Motion at Low Reynolds Number
,”
J. Fluids Struct.
,
87
, pp.
1
22
.10.1016/j.jfluidstructs.2019.02.015
44.
Engels
,
T.
,
Kolomenskiy
,
D.
,
Schneider
,
K.
,
Farge
,
M.
,
Lehmann
,
F.-O.
, and
Sesterhenn
,
J.
,
2019
, “
Impact of Turbulence on Flying Insects in Tethered and Free Flight: High-Resolution Numerical Experiments
,”
Phys. Rev. Fluids
,
4
(
1
), p.
013103
.10.1103/PhysRevFluids.4.013103
45.
Ellington
,
C.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. III. Kinematics
,”
Philos. Trans. R. Soc. London. B, Biol. Sci.
,
305
, pp.
41
78
.10.1098/rstb.1984.0051
46.
Mistick
,
E. A.
,
Mountcastle
,
A. M.
, and
Combes
,
S. A.
,
2016
, “
Wing Flexibility Improves Bumblebee Flight Stability
,”
J. Exp. Biol.
,
219
(
21
), pp.
3384
3390
.10.1242/jeb.133157
47.
Mountcastle
,
A. M.
, and
Combes
,
S. A.
,
2013
, “
Biomechanical Strategies for Mitigating Collision Damage in Insect Wings: Structural Design Versus Embedded Elastic Materials
,”
J. Exp. Biol.
,
217
(
7
), pp.
1108
1115
.10.1242/jeb.092916
48.
Kolomenskiy
,
D.
,
Ravi
,
S.
,
Xu
,
R.
,
Ueyama
,
K.
,
Jakobi
,
T.
,
Engels
,
T.
,
Nakata
,
T.
,
Sesterhenn
,
J.
,
Farge
,
M.
,
Schneider
,
K.
,
Onishi
,
R.
, and
Liu
,
H.
,
2019
, “
Wing Morphology and Inertial Properties of Bumblebees
,”
J. Aero Aqua Bio-Mech.
,
8
(
1
), pp.
41
47
.10.5226/jabmech.8.41
49.
Shah
,
M.
,
Bayandor
,
J.
, and
Battaglia
,
F.
,
2021
, “The Effect of Wing Corrugation on Insect Forward Flight,” Proceedings of the 5th-6th Thermal and Fluids Engineering Conference (
TFEC
),
Virtual
, May 26–28, Paper No. TFEC-2020-31958, p. 636.
50.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
51.
Sane
,
S. P.
,
2003
, “
The Aerodynamics of Insect Flight
,”
J. Exp. Biol.
,
206
(
23
), pp.
4191
4208
.10.1242/jeb.00663
52.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
53.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2018
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1269
1285
.10.1016/j.rser.2017.05.058
You do not currently have access to this content.