Abstract

Two types of high flow nasal cannula (HFNC) oxygen therapy were tested using computational models of the human upper airway to investigate cannula geometry's effect on CO2 flush. Models were run with a generic HFNC geometry, two High Velocity Nasal Insufflation (HVNI) cannula geometries, and without any cannula, each for open and closed mouth patient scenarios. For the open mouth scenario, models included either an inflamed left nasal passageway or a healthy (uninflamed) left nasal passageway. With a healthy left nasal passageway and open mouth, the CO2 remaining in the airway at end-exhale was 1.88 mg and 1.84 mg for the HVNI cannulas, 2.56 mg for HFNC, and 10.0 mg for the model with no cannula. With an inflamed left nasal passageway and open mouth, the CO2 remaining was 1.97 mg, 1.95 mg, 4.24 mg, and 10.5 mg for the same sequence of therapy types. For the closed mouth models, the distinction between therapy types was negligible. It was found that the higher momentum from the HVNI cannulas created a higher resistance against the infiltration of exhaled CO2 into the upper airway. The HVNI cannulas also began flushing the airway (reducing total CO2 mass) earlier in the exhalation cycle than both the HFNC and no-cannula models. The higher resistance to expiratory flow entering the upper airway and earlier transition to flush led to HVNI therapy having the lowest values of CO2 remaining in the airway.

References

1.
Panadero
,
C.
,
Abad-Fernández
,
A.
,
Rio-Ramírez
,
M. T.
,
Acosta Gutiérrez
,
C. M.
,
Calderón-Alcalá
,
M.
,
López-Riolobos
,
C.
,
Matesanz-López
,
C.
, et al.,
2020
, “
High-Flow Nasal Cannula for Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19
,”
Multidiscip. Respir. Med.
,
15
(
1
), p.
693
.10.4081/mrm.2020.693
2.
Teng
,
X.
,
Shen
,
Y.
,
Han
,
M.
,
Yang
,
G.
,
Zha
,
L.
, and
Shi
,
J.
,
2021
, “
The Value of High-Flow Nasal Cannula Oxygen Therapy in Treating Novel Coronavirus Pneumonia
,”
Eur. J. Clin. Invest.
,
51
(
3
), p.
e13435
.10.1111/eci.13435
3.
Hu
,
P.
,
Cai
,
C.
,
Yi
,
H.
,
Zhao
,
J.
,
Feng
,
Y.
, and
Wang
,
Q.
,
2022
, “
Aiding Airway Obstruction Diagnosis With Computational Fluid Dynamics and Convolutional Neural Network: A New Perspective and Numerical Case Study
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081206
.10.1115/1.4053651
4.
Soni
,
B.
,
Kumar Nayak
,
A.
, and
Miguel
,
A. F.
,
2022
, “
Gas Flow in Occluded Respiratory Tree: A New Matrix-Based Approach
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071207
.10.1115/1.4053124
5.
Mofakham
,
A. A.
, and
Ahmadi
,
G.
,
2020
, “
Improved Discrete Random Walk Stochastic Model for Simulating Particle Dispersion and Deposition in Inhomogeneous Turbulent Flows
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101401
.10.1115/1.4047538
6.
Holmstedt
,
E.
,
Åkerstedt
,
H. O.
,
Staffan Lundström
,
T.
, and
Högberg
,
S. M.
,
2016
, “
Modeling Transport and Deposition Efficiency of Oblate and Prolate Nano- and Micro-Particles in a Virtual Model of the Human Airway
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081203
.10.1115/1.4032934
7.
Keith Walters
,
D.
,
Burgreen
,
G. W.
,
Hester
,
R. L.
,
Thompson
,
D. S.
,
Lavallee
,
D. M.
,
Pruett
,
W. A.
, and
Wang
,
X.
,
2014
, “
Cyclic Breathing Simulations in Large-Scale Models of the Lung Airway From the Oronasal Opening to the Terminal Bronchioles
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
101101
.10.1115/1.4027485
8.
Soni
,
B.
,
Suri
,
A.
,
Nayak
,
A. K.
, and
Miguel
,
A. F.
,
2022
, “
Simplified Lumped Parameter Model for Oscillatory Flow in an Elastic Tube: A Hierarchical Approach
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081301
.10.1115/1.4053553
9.
Macé
,
J.
,
Marjanovic
,
N.
,
Faranpour
,
F.
,
Mimoz
,
O.
,
Frerebeau
,
M.
,
Violeau
,
M.
,
Bourry
,
P.-A.
, et al.,
2019
, “
Early High-Flow Nasal Cannula Oxygen Therapy in Adults With Acute Hypoxemic Respiratory Failure in the ED: A Before-After Study
,”
Am. J. Emerg. Med.
,
37
(
11
), pp.
2091
2096
.10.1016/j.ajem.2019.03.004
10.
Gedikloglu
,
M.
,
Gulen
,
M.
,
Satar
,
S.
,
Icen
,
Y. K.
,
Avci
,
A.
,
Yesiloglu
,
O.
, and
Karcioglu
,
O.
,
2022
, “
How to Treat Patients With Acute Respiratory Failure? Conventional Oxygen Therapy Versus High-Flow Nasal Cannula in the Emergency Department
,”
Hong Kong J. Emerg. Med.
,
29
(
2
), pp.
84
93
.10.1177/1024907919886245
11.
Chen
,
X.
,
Tan
,
C.
, and
Jiang
,
H.
,
2023
, “
High-Flow Nasal Cannula Oxygen Therapy is Superior to Conventional Oxygen Therapy in Intensive Care Unit Patients After Extubation
,”
Am. J. Transl. Res.
,
15
(
2
), pp.
1239
1246
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006799/#:~:text=These%20findings%20indicate%20that%20HFNC,re%2Dintubation%20(8.00%25)
12.
Piquilloud
,
L.
,
Olivier
,
P.-Y.
,
Richard
,
J.-C.
,
Thepot-Seegers
,
V.
,
Brochard
,
L.
,
Mercat
,
A.
, and
Beloncle
,
F.
,
2022
, “
High Flow Nasal Cannula Improves Breathing Efficiency and Ventilatory Ratio in COPD Patients Recovering From an Exacerbation
,”
J. Crit. Care
,
69
, p.
154023
.10.1016/j.jcrc.2022.154023
13.
Rochwerg
,
B.
,
Granton
,
D.
,
Wang
,
D. X.
,
Einav
,
S.
, and
Burns
,
K. E. A.
,
2019
, “
High Flow Nasal Cannula Compared With Conventional Oxygen Therapy for Acute Hypoxemic Respiratory Failure: A Systematic Review and Meta-Analysis
,”
Intensive Care Med.
,
45
(
8
), pp.
1171
1171
.10.1007/s00134-019-05658-2
14.
Haywood
,
S. T.
,
Whittle
,
J. S.
,
Volakis
,
L. I.
,
Dungan
,
G.
,
Bublewicz
,
M.
,
Kearney
,
J.
,
Ashe
,
T.
, et al.,
2019
, “
HVNI Vs NIPPV in the Treatment of Acute Decompensated Heart Failure: Subgroup Analysis of a Multi-Center Trial in the ED
,”
Am. J. Emerg. Med.
,
37
(
11
), pp.
2084
2090
.10.1016/j.ajem.2019.03.002
15.
Möller
,
W.
,
Celik
,
G.
,
Feng
,
S.
,
Bartenstein
,
P.
,
Meyer
,
G.
,
Eickelberg
,
O.
,
Schmid
,
O.
, and
Tatkov
,
S.
,
2015
, “
Nasal High Flow Clears Anatomical Dead Space in Upper Airway Models
,”
J. Appl. Physiol.
,
118
(
12
), pp.
1525
1532
.10.1152/japplphysiol.00934.2014
16.
Möller
,
W.
,
Feng
,
S.
,
Domanski
,
U.
,
Franke
,
K.-J.
,
Celik
,
G.
,
Bartenstein
,
P.
,
Becker
,
S.
, et al.,
2017
, “
Nasal High Flow Reduces Dead Space
,”
J. Appl. Physiol.
,
122
(
1
), pp.
191
197
.10.1152/japplphysiol.00584.2016
17.
Moore
,
C. P.
,
Katz
,
I. M.
,
Caillibotte
,
G.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2019
, “
Correlation of High Flow Nasal Cannula Outlet Area With Gas Clearance and Pressure in Adult Upper Airway Replicas
,”
Clinical Biomech.
,
66
, pp.
66
73
.10.1016/j.clinbiomech.2017.11.003
18.
Sztrymf
,
B.
,
Messika
,
J.
,
Mayot
,
T.
,
Lenglet
,
H.
,
Dreyfuss
,
D.
, and
Ricard
,
J.-D.
,
2012
, “
Impact of High-Flow Nasal Cannula Oxygen Therapy on Intensive Care Unit Patients With Acute Respiratory Failure: A Prospective Observational Study
,”
J. Crit. Care
,
27
(
3
), pp.
324.e9
324.e13
.10.1016/j.jcrc.2011.07.075
19.
Wilkins
,
J. V.
,
Gardner
,
M. T.
,
Walenga
,
R.
,
Hosseini
,
S.
,
Longest
,
P. W.
, and
Golshahi
,
L.
,
2020
, “
Mechanistic Understanding of High Flow Nasal Cannula Therapy and Pressure Support With an In Vitro Infant Model
,”
Ann. Biomed. Eng.
,
48
(
2
), pp.
624
633
.10.1007/s10439-019-02377-z
20.
Parke
,
R. L.
,
Eccleston
,
M. L.
, and
McGuinness
,
S. P.
,
2011
, “
The Effects of Flow on Airway Pressure During Nasal High-Flow Oxygen Therapy
,”
Respir. Care
,
56
(
8
), pp.
1151
1155
.10.4187/respcare.01106
21.
Hebbink
,
R. H.
,
Duiverman
,
M. L.
,
Wijkstra
,
P. J.
, and
Hagmeijer
,
R.
,
2022
, “
Upper Airway Pressure Distribution During Nasal High-Flow Therapy
,”
Med. Eng. Phys.
,
104
, p.
103805
.10.1016/j.medengphy.2022.103805
22.
Moore
,
C. P.
,
Katz
,
I. M.
,
Pichelin
,
M.
,
Caillibotte
,
G.
,
Finlay
,
W. H.
, and
Martin
,
A. R.
,
2019
, “
High Flow Nasal Cannula: Influence of Gas Type and Flow Rate on Airway Pressure and CO(2) Clearance in Adult Nasal Airway Replicas
,”
Clin. Biomech.
,
65
, pp.
73
80
.10.1016/j.clinbiomech.2019.04.004
23.
Kacinski
,
R.
,
Strasser
,
W.
,
Leonard
,
S.
,
Prichard
,
R.
, and
Truxel
,
B.
,
2023
, “
Validation of a Human Upper Airway CFD Model for Turbulent Mixing
,”
ASME J. Fluids Eng., accepted
, pp.
1
60
.
24.
Kacinski
,
R.
,
Strasser
,
W.
, and
Leonard
,
S.
,
2023
, “
Characteristics of Flow in the Upper Airway During High Flow Nasal Cannula Oxygen Therapy
,”
Proceeding of 8th Thermal and Fluids Engineering Conference (TFEC)
, Begell House,
College Park, MD
, Mar. 26–29, pp.
193
201
.
25.
Xia
,
J.
,
Chang
,
J.
,
Liang
,
J.
,
Wang
,
Y.
, and
Wang
,
N.
,
2021
, “
Flow Field Analysis of Adult High-Flow Nasal Cannula Oxygen Therapy
,”
Complexity
,
2021
, pp.
1
11
.10.1155/2021/4981691
26.
Miller
,
T.
,
Saberi
,
B.
, and
Saberi
,
S.
,
2016
, “
Computational Fluid Dynamics Modeling of Extrathoracic Airway Flush: Evaluation of High Flow Nasal Cannula Design Elements
,”
J. Pulm. Respir. Med.
,
6
(
5
), pp.
1
7
.10.4172/2161-105X.1000376
27.
Khamooshi
,
M.
,
Fletcher
,
D. F.
,
Salati
,
H.
,
Vahaji
,
S.
,
Gregory
,
S.
, and
Inthavong
,
K.
,
2022
, “
Computational Assessment of the Nasal Air Conditioning and Paranasal Sinus Ventilation From Nasal Assisted Breathing Therapy
,”
Phys. Fluids
,
34
(
5
), p.
051912
.10.1063/5.0090058
28.
Strasser
,
W.
,
Kacinski
,
R.
, and
Wilson
,
D.
,
2023
,
It's About Time: Jet Interactions in an Asymmetrical Plenum
,
Nuclear Technology
, Oxfordshire, UK.10.1080/00295450.2023.2238156
29.
Strasser
,
W.
,
2022
, “
The Nature of “Searching” Vortices in Fluidic Logic Driven by a Switching Jet
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081303
.10.1115/1.4053786
30.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.