Abstract

Liquid ring compressors (LRC) are used for a wide range of compression and vacuum applications, including corrosive or flammable gases for which other compression technologies may not be feasible. The presence of a surrounding liquid ring may offer the possibility of polytropic compression due to incremental heat loss to the liquid. This aspect may play a critical role in compression (and expansion) processes of heat engine cycles toward approaching the targeted Carnot efficiencies. To date, published research addressing the physical phenomena behind LRC is highly limited. Experimentally studying these machines will result in a demonstration of aggregate performance. In order to improve our understanding of LRC with and without freely rotating casings and to be able to analyze the complex inner workings, a numerical approach using computational fluid dynamics (CFD) tools, supported by available experimental data for validation purposes, has been established. Physical parameters such as water–air interface, temperature, pressure, entropy production, vorticity, and shear strain rate are presented for a baseline geometry taken from the open literature. Finally, temperature-entropy paths and isothermal and isentropic efficiencies are presented. The significant performance gain from the freely rotating casing is highlighted. Detailed results present insights into work addition processes of such machines.

References

1.
Bannwarth
,
H.
,
2005
, “
Chapter 3: Liquid Ring Vacuum Pumps and Liquid Ring Compressors
,”
Liquid Ring Vacuum Pumps, Compressors and Systems: Conventional and Hermetic Design
,
Wiley‐VCH Verlag
,
Weinheim, Germany
, pp.
157
238
.
2.
Vertepov
,
Y.
,
Matsenko
,
V.
, and
Antonov
,
V.
,
1997
, “
Advances in Water-Ring Vacuum Pumps and Compressors
,”
Chem. Pet. Eng.
,
33
(
5
), pp.
522
523
.10.1007/BF02416613
3.
Crewdson
,
E.
,
1956
, “
Water-Ring Self-Priming Pumps
,”
Proc. Inst. Mech. Eng.
,
170
(
1
), pp.
407
425
.10.1243/PIME_PROC_1956_170_039_02
4.
Lehmann
,
W.
,
1995
, “
Chapter 12: Liquid Ring Vacuum Pumps and Compressors With Magnetic Drive
,”
Leak-Free Pumps and Compressors Handbook
, G.
Vetter, ed.
,
Elsevier Science
, Kidlington, Oxford, UK, pp.
251
268
.
5.
Zhang
,
R.
, and
Guo
,
G.
,
2020
, “
Experimental Study on Gas-Liquid Transient Flow in Liquid-Ring Vacuum Pump and Its Hydraulic Excitation
,”
Vaccum
,
171
, p.
109025
.10.1016/j.vacuum.2019.109025
6.
Haavik
,
H.
,
2000
, “
Drag Reduction Experiments With Rotating Casings in Liquid Ring Vacuum Pumps
,”
15th International Compressor Engineering Conference
,
Purdue University, West Lafayette
,
IN
, July 25–28, pp.
745
752
.https://core.ac.uk/download/pdf/4957159.pdf
7.
Zhang
,
Y.
,
Zhou
,
F.
,
Li
,
J.
,
Kang
,
J.
, and
Zhang
,
Q.
,
2020
, “
Application and Research of New Energy-Efficiency Technology for Liquid Ring Vacuum Pump Based on Turbulent Drag Reduction Theory
,”
Vaccum
,
172
, p.
109076
.10.1016/j.vacuum.2019.109076
8.
Zhang
,
Y.
,
Li
,
J.
,
Kang
,
J.
, and
Zhou
,
F.
,
2021
, “
Experimental Study on the Flow and Heat Transfer Behavior of Polymer Solutions in the Closed Liquid Ring Vacuum Pump System
,”
Appl. Therm. Energy
,
199
, p.
117525
.10.1016/j.applthermaleng.2021.117525
9.
Wei
,
X.
, and
Zhang
,
R.
,
2022
, “
The Axial Tip Clearance Leakage Analysis of the Winglet and Composite Blade Tip for the Liquid-Ring Vacuum Pump
,”
Vaccum
,
200
, p.
111027
.10.1016/j.vacuum.2022.111027
10.
Kakuda
,
K.
,
Ushiyama
,
Y.
,
Obara
,
S.
,
Toyoani
,
J.
,
Matsuda
,
S.
,
Tanaka
,
H.
, and
Katagiri
,
K.
,
2010
, “
Flow Simulations in a Liquid Ring Pump Using a Particle Method
,”
Comput. Model. Eng. Sci.
,
66
(
3
), pp.
215
226
.10.3970/cmes.2010.066.215
11.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
12.
Onno
,
U.
,
1997
, “
Numerical Prediction of Two Fluid Systems With Sharp Interfaces
,” Ph.D. dissertation,
Imperial College of Science, Technology & Medicine
,
London
.
13.
Nichita
,
B.
,
Zun
,
I.
, and
Thome
,
J.
,
2010
, “
A Level Set Method Coupled With a Volume of Fluid Method for Modeling of Gas-Liquid Interface in Bubbly Flow
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081302
.10.1115/1.4002166
14.
Passandideh-Fard
,
M.
,
Teymourtash
,
A.
, and
Khavari
,
M.
,
2011
, “
Numerical Study of Circular Hydraulic Jump Using Volume-of-Fluid Method
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011401
.10.1115/1.4003307
15.
Jin
,
Q.
,
Hudson
,
D.
, and
Price
,
W.
,
2022
, “
A Combined Volume of Fluid and Immersed Boundary Method for Modeling of Two-Phase Flows With High Density Ratio
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031402
.10.1115/1.4052242
16.
Yu
,
J.
,
Luo
,
X.
,
Wang
,
B.
,
Wu
,
S.
, and
Wang
,
J.
,
2021
, “
Analysis of Gas–Liquid–Solid Three-Phase Flows in Hydrocyclones Through a Coupled Method of Volume of Fluid and Discrete Element Model
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111402
.10.1115/1.4051219
17.
Zhou
,
L.
,
Liu
,
D.
, and
Ou
,
C.
,
2011
, “
Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket With VOF Model
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
1
), pp.
127
140
.10.1080/19942060.2011.11015357
18.
Wu
,
W.
,
Hu
,
C.
,
Hu
,
J.
,
Yuan
,
S.
, and
Zhang
,
R.
,
2017
, “
Jet Cooling Characteristics for Ball Bearings Using the VOF Multiphase Model
,”
Int. J. Therm. Sci.
,
116
, pp.
150
158
.10.1016/j.ijthermalsci.2017.02.014
19.
Mansour
,
M.
,
Parikh
,
T.
,
Engel
,
S.
, and
Thévenin
,
D.
,
2020
, “
Numerical Investigations of Gas–Liquid Two-Phase Flow in a Pump Inducer
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021302
.10.1115/1.4044651
20.
Lundgreen
,
R.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2019
, “
Increasing Inducer Stability and Suction Performance With a Stability Control Device
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011204
.10.1115/1.4040098
21.
Guo
,
M.
,
Tang
,
X.
,
Li
,
X.
,
Wang
,
F.
, and
Shi
,
X.
,
2021
, “
A Preliminary Study on the Simulation of Vortex Flow in Pump Intake Based on LBM-VOF-LES Combined Model
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051502
.10.1115/1.4049684
22.
Liebrand
,
R.
,
Klapwijk
,
M.
,
Lloyd
,
T.
, and
Vaz
,
G.
,
2021
, “
Transition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices
,”
ASME J. Fluids Eng.
,
143
(
1
), p.
011202
.10.1115/1.4048133
23.
Ding
,
H.
,
Jiang
,
Y.
,
Wu
,
H.
, and
Wang
,
J.
,
2015
, “
Two Phase Flow Simulation of Water Ring Vacuum Pump Using VOF Model
,”
ASME
Paper No. AJKFluids2015-33654.10.1115/AJKFluids2015-33654
24.
Pandey
,
A.
,
Khan
,
S.
,
Dekker
,
R.
, and
Shih
,
T.
,
2021
, “
Multiphase Flow in a Liquid Ring Vacuum Pump
,”
ASME J. Fluids Eng.
,
143
(
1
), pp.
1
13
.10.1115/1.4047848
25.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
26.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Fourth International Symposium on Turbulence, Heat and Mass Transfer
, Antalya, Turkey,
Oct. 12–17
,
pp.
625
632
.
27.
Guo
,
G.
,
Zhang
,
R.
, and
Yu
,
H.
,
2020
, “
Evaluation of Different Turbulence Models on Simulation of Gas-Liquid Transient Flow in a Liquid-Ring Vacuum Pump
,”
Vaccum
,
180
, p.
109586
.10.1016/j.vacuum.2020.109586
28.
Pandey
,
A.
, and
Shih
,
T. I.-P.
,
2023
, “
Physics-Based Reduced-Order Model for Liquid Ring Pumps
,”
ASME J. Fluids Eng.
,
145
(
4
), p.
041501
.10.1115/1.4054182
29.
Fossa
,
M.
, and
Marchitto
,
A.
,
2009
, “
A Simplified Approach for Predicting the Intermittent Behavior of Gas-Liquid Mixtures in Pipes
,”
ASME J. Fluids Eng.
,
131
(
1
), p.
011304
.10.1115/1.2953296
30.
Wang
,
S.
,
2010
, “
The Analysis of Cavitation Problems in the Axial Piston Pump
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
074502
.10.1115/1.4002058
31.
Yang
,
X.
,
Qin
,
Y.
, and
Qu
,
Z.
,
2016
, “
Leakage Loss Study of a Synchronal Rotary Multiphase Pump With a Full Range of Inlet Gas Volume Fractions
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
071301
.10.1115/1.4032590
32.
Assaf
,
G.
,
2015
,
Liquid Ring Compressor
,
U.S. Patent and Trademark Office Patent
,
Washington, DC,
U.S. Patent No. 9,181,948.
33.
Ansys Inc.
,
2017
, “
Ansys Fluent Theory Guide
,” Ansys, Canonsburg, PA.
You do not currently have access to this content.