Previous work by the authors has shown that broader analyses than those typically found in literature (in terms of operating pressures allowed) can yield interesting conclusions with respect to the best candidate cycles for certain applications. This has been tested for the thermodynamic performance (first and second laws) but it can also be applied from an economic standpoint. This second approach is introduced in this work where typical operating conditions for concentrated solar power (CSP) applications (current and future generations of solar tower plants) are considered (750 °C and 30 MPa). For these, the techno-economic performance of each cycle is assessed in order to identify the most cost-effective layout when it comes to the overnight capital cost (OCC). This analysis accounts for the different contributions to the total cost of the plant, including all the major equipment that is usually found in a CSP power plant such as the solar field and thermal energy storage (TES) system. The work is, thus, aimed at providing guidelines to professionals in the area of basic engineering and prefeasibility study of CSP plants who find themselves in the process of selecting a particular power cycle for a new project (set of specifications and boundary conditions).

References

1.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
2.
Wang
,
K.
,
He
,
Y.-L.
, and
Zhu
,
H.-H.
,
2017
, “
Integration Between Supercritical CO2 Brayton Cycles and Molten Salt Solar Power Towers: A Review and a Comprehensive Comparison of Different Cycle Layouts
,”
Appl. Energy
,
195
, pp.
819
836
.
3.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.
4.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/17746
5.
Dennis
,
R.
,
2017
, “
Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation
,”
Fourth International Seminar on ORC Power Systems, Milano, Italy, Sept. 13–15, Paper No. 234
.
6.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
Fifth International Supercritical CO2 Power Cycle Symposium
, San Antonio, TX, Mar. 29–31, pp.
28
31
.http://www.sco2symposium.com/www2/sco2/papers2016/SystemModeling/059paper.pdf
7.
Driscoll
,
M. J.
,
2004
, “
Supercritical CO2 Plant Cost Assessment
,” Masachussets Institute of Technology, Cambridge, MA, Report No. MIT-GFR-019.
8.
De Barbadillo
,
J.
,
Baker
,
B. A.
, and
Gollihue
,
R.
,
2011
, “
Nickel-Base Superalloys for Advanced Power Cycles: An Alloy Producer's Perspective
,” Fourth International Supercritical CO2 Cycle Symposium, Pittsburgh, PA, Sept. 9–10, Paper No. 3.
9.
Cich
,
S.
,
Moore
,
J.
,
Rimpel
,
A.
, and
Hoopes
,
K.
,
2016
, “
Supercritical CO2 Power Cycle Limits Based on Material Cost
,” Fifth Supercritical CO2 Power Cycles Symposium, San Atonio, TX, Mar. 29--31, Paper No. 13.
10.
Hinze
,
J. F.
,
Nellis
,
G. F.
, and
Anderson
,
M. H.
,
2017
, “
Cost Comparison of Printed Circuit Heat Exchanger to Low Cost Periodic Flow Regenerator for Use as Recuperator in a sCO2 Brayton Cycle
,”
Appl. Energy
,
208
, pp.
1150
1161
.
11.
Kim
,
I. H.
,
Zhang
,
X.
,
Christensen
,
R.
, and
Sun
,
X.
,
2016
, “
Design Study and Cost Assessment of Straight, Zigzag, S-shape, and OSF PCHEs for a FLiNaK-sCO2 Secondary Heat Exchanger in FHRs
,”
Ann. Nucl. Energy
,
94
, pp.
129
137
.
12.
NREL
,
2009
, “
Solar Advisor Model Reference Manual for CSP Trough Systems
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-670-43704.
13.
Schmitt
,
J.
,
Wilkes
,
J.
,
Allison
,
T.
,
Bennett
,
J.
,
Wygant
,
K.
, and
Pelton
,
R.
,
2017
, “
Lowering the Levelized Cost of Electricity of a Concentrating Solar Power Tower With a Supercritical Carbon Dioxide Power Cycle
,”
ASME
Paper No. GT2017-64958.
14.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Analysis of the Thermodynamic Potential of Supercritical Carbon Dioxide Cycles: A Systematic Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051701
.
15.
Crespi
,
F.
,
Sánchez
,
D.
,
Rodríguez
,
J. M.
, and
Gavagnin
,
G.
,
2017
, “
Fundamental Thermo-Economic Approach to Selecting sCO2 Power Cycles for CSP Applications
,”
Energy Procedia
,
129
, pp.
963
970
.
16.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Cycles for Power Generation in CSP Solar Tower Plants
,”
Appl. Energy
,
204
, pp.
1007
1017
.
17.
Padilla
,
R. V.
,
Too
,
Y. C. S.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
18.
Martín
,
M.
, and
Sánchez
,
D.
,
2018
, “
A Detailed Techno-Economic Analysis of Gas Turbines Applied to CSP Power Plants With Central Receiver
,”
ASME
Paper No. GT2018-77090
.
19.
Romatoski
,
R.
, and
Hu
,
L.
,
2017
, “
Fluoride Salt Coolant Properties for Nuclear Reactor Applications: A Review
,”
Ann. Nucl. Energy
,
109
, pp.
635
647
.
20.
Rodríguez
,
J. M.
,
Sánchez
,
D.
,
Martínez
,
G. S.
, Bennouna, E. G., and Ikken, B.,
2016
, “
Techno-Economic Assessment of Thermal Energy Storage Solutions for a 1MWe CSP-ORC Power Plant
,”
Sol. Energy
,
140
, pp.
206
218
.
21.
Hoopes
,
K.
,
Sánchez
,
D.
, and
Crespi
,
F.
,
2016
, “
A New Method for Modelling Off-Design Performance of sCO2 Heat Exchangers Without Specifying Detailed Geometry
,” Fifth Supercritical CO2 Power Cycles Symposium, San Antonio, TX, Mar. 29–31, Paper No. 32.
22.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
The Conductance Ratio Method for Off-Design Heat Exchanger Modeling and Its Impact on an sCO2 Recompression Cycle
,”
ASME
Paper No. GT2017-64908
.
23.
Yoon
,
S.-J.
,
Sabharwall
,
P.
, and
Kim
,
E.-S.
,
2013
, “
Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger
,” Idaho Nation Laboratory, Idaho Falls, ID, Report No.
83415
.https://inldigitallibrary.inl.gov/sites/sti/sti/5901289.pdf
24.
Cis Inspector
,
2018
, “Some Examples for Allowable Stress Values “S” of Typical Stainless Steels According to Section II, Part D, Table 1A,” Metric GmBH, Essen, Germany, accessed Nov. 15, 2018, https://www.cis-inspector.com/asme-code-calculation-allowable-stresses-high-alloy.html
25.
Special Metals
,
2018
, “Inconel Alloy 617 Specification Sheet,” Special Metals, New Hartford, NY, accessed Nov. 15, 2018, http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf
26.
Couper
,
J. R.
,
Penney
,
W. R.
, and
Fair
,
J. R.
,
2009
,
Chemical Process Equipment-Selection and Design
, 2nd ed.,
Gulf Professional Publishing
, Burlington, MA.
27.
Thermoflow Inc
., 2018, “Thermoflex 26 User's Manual,” Thermoflow Inc., Jacksonville, FL, accessed Jan. 9, 2019, https://www.thermoflow.com/tf_videos.html
28.
ISO
,
1997
, “Gas Turbines—Procurement—Part 2: Standard Reference Conditions and Rating,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No.
3977–2:1997
.https://www.iso.org/standard/24755.html
29.
Gavagnin
,
G.
,
Sánchez
,
D.
,
Martínez
,
G. S.
,
Rodríguez
,
J. M.
, and
Muñoz
,
A.
,
2017
, “
Cost Analysis of Solar Thermal Power Generators Based on Parabolic Dish and Micro Gas Turbine: Manufacturing, Transportation and Installation
,”
Appl. Energy
,
194
, pp.
108
122
.
30.
Ho
,
C. K.
, and
Kolb
,
G. J.
,
2010
, “
Incorporating Uncertainty Into Probabilistic Performance Models of Concentrating Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
031012
.
31.
Ho
,
C.
,
Mehos
,
M.
,
Turchi
,
C.
, and
Wagner
,
M.
,
2014
, “
Probabilistic Analysis of Power Tower Systems to Achieve Sunshot Goals
,”
Energy Procedia
,
49
, pp.
1410
1419
.
32.
Black & Veatch
,
2012
, “
Cost and Performance Data for Power Generation Technologies
,” 2012, “Cost and Performance Data for Power Prepared for the National Renewable Energy Laboratory,” Overland Park, KS.
33.
Taylor
,
M.
,
Ralon
,
P.
, and
Ilas
,
A.
,
2016
, “The Power to Change: Solar and Wind Cost Reduction Potential to 2025,” IRENA, Bonn, Germany.
You do not currently have access to this content.