Abstract

Proton-exchange membrane fuel cell (PEMFC) systems are one of the most promising technologies for the decarbonization of the transportation and power sectors. This article investigates the dynamics of an innovative turbocharged PEMFC system. A detailed dynamic model of the turbocharger-proton-exchange membrane fuel cell (TC-PEMFC) is developed in Matlab-Simulink. This model is used to study the dynamic performance of the system, considering the fluid-dynamic and thermal transients of its components. At first, the model is used to simulate the response of the TC-PEMFC to step changes of multiple input variables: openings of fuel valve and humidifier bypass valve, rotational speeds of turbocharger (TC), blower, and cooling pump. These simulations highlight the strong sensitivity of the system to the fuel valve opening, making the need for a feedback controller clear. Many control logics are then implemented on the model to keep the operative parameters of the TC-PEMFC within an acceptable range. The dynamic model is used to simulate the performance of the TC-PEMFC system during different power load ramps. From the results of these simulations, it is possible to assess the effectiveness of each controller and to verify the compliance of all the system constraints. During load increases, proper operation of the system is always guaranteed, whereas load reductions are limited by the possibility of compressor surge (35 A/s of maximum ramp rate). To overcome this limit, a possible modification to the control logics is tested in the final part of the study.

References

1.
Commissione Europea
,
2024
, “
Long Term Strategy for 2050 – European Commission
,” accessed Feb. 26, 2024, https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_it
2.
3.
Rivarolo
,
M.
,
Rattazzi
,
D.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2021
, “
Multi-Criteria Comparison of Power Generation and Fuel Storage Solutions for Maritime Application
,”
Energy Convers. Manage.
,
244
, p.
114506
.10.1016/j.enconman.2021.114506
4.
Candusso
,
D.
,
Harel
,
F.
,
De Bernardinis
,
A.
,
François
,
X.
,
Péra
,
M. C.
,
Hissel
,
D.
,
Schott
,
P.
,
Coquery
,
G.
, and
Kauffmann
,
J. M.
,
2006
, “
Characterisation and Modelling of a 5 KW PEMFC for Transportation Applications
,”
Int. J. Hydrogen Energy
,
31
(
8
), pp.
1019
1030
.10.1016/j.ijhydene.2005.11.010
5.
Shi
,
W.
,
Yi
,
B.
,
Hou
,
M.
, and
Shao
,
Z.
,
2007
, “
The Effect of H2S and CO Mixtures on PEMFC Performance
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4412
4417
.10.1016/j.ijhydene.2007.06.029
6.
Valdés-López
,
V. F.
,
Mason
,
T.
,
Shearing
,
P. R.
, and
Brett
,
D. J. L.
,
2020
, “
Carbon Monoxide Poisoning and Mitigation Strategies for Polymer Electrolyte Membrane Fuel Cells – A Review
,”
Prog. Energy Combust. Sci.
,
79
, p.
100842
.10.1016/j.pecs.2020.100842
7.
Wilson
,
M. S.
,
Garzon
,
F. H.
,
Sickafus
,
K. E.
, and
Gottesfeld
,
S.
,
1993
, “
Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
10
), pp.
2872
2877
.10.1149/1.2220925
8.
PM Proton Motor
,
2024
, “
HyRange® - Proton Motor Fuel Cell GmbH
,” Puchheim, Germany, accessed Feb. 26, 2024, https://www.proton-motor.de/en/hyrange/
9.
Ballard
,
2024
, “
Heavy Duty Modules - Fuel Cell Power Products | Ballard Power
,” Burnaby, BC, Canada, accessed Feb. 26, 2024, https://www.ballard.com/fuel-cell-solutions/fuel-cell-power-products/motive-modules
10.
Lu
,
J. B.
,
Wei
,
G. H.
,
Zhu
,
F. J.
,
Yan
,
X. H.
, and
Zhang
,
J. L.
,
2019
, “
Pressure Effect on the PEMFC Performance
,”
Fuel Cells
,
19
(
3
), pp.
211
220
.10.1002/fuce.201800135
11.
Tekin
,
M.
,
Hissel
,
D.
,
Pera
,
M. C.
, and
Kauffmann
,
J. M.
,
2006
, “
Energy Consumption Reduction of a PEM Fuel Cell Motor-Compressor Group Thanks to Efficient Control Laws
,”
J. Power Sources
,
156
(
1
), pp.
57
63
.10.1016/j.jpowsour.2005.08.037
12.
Kim
,
D. K.
,
Seo
,
J. H.
,
Kim
,
S.
,
Lee
,
M. K.
,
Nam
,
K. Y.
,
Song
,
H. H.
, and
Kim
,
M. S.
,
2014
, “
Efficiency Improvement of a PEMFC System by Applying a Turbocharger
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20139
20150
.10.1016/j.ijhydene.2014.09.152
13.
Ferrari
,
M. L.
,
Rossi
,
I.
,
Sorce
,
A.
, and
Massardo
,
A. F.
,
2019
, “
Advanced Control System for Grid-Connected SOFC Hybrid Plants: Experimental Verification in Cyber-Physical Mode
,”
ASME J. Eng. Gas Turbine Power
,
141
(
9
), p.
091019
.10.1115/1.4044196
14.
Mantelli
,
L.
,
Ferrari
,
M. L.
, and
Magistri
,
L.
,
2021
, “
Off-Design Performance Analysis of a Turbocharged Solid Oxide Fuel Cell System
,”
Appl. Therm. Eng.
,
183
, p.
116134
.10.1016/j.applthermaleng.2020.116134
15.
Mantelli
,
L.
,
Ferrari
,
M. L.
, and
Traverso
,
A.
,
2021
, “
Dynamics and Control of a Turbocharged Solid Oxide Fuel Cell System
,”
Appl. Therm. Eng.
,
191
, p.
116862
.10.1016/j.applthermaleng.2021.116862
16.
Iester
,
F.
,
Mantelli
,
L.
,
Bozzolo
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2023
, “
Performance Assessment of an Innovative Turbocharged Proton-Exchange Membrane Fuel Cell System
,”
ASME
Paper No. GT2023-103513.10.1115/GT2023-103513
17.
Saadi
,
A.
,
Becherif
,
M.
,
Hissel
,
D.
, and
Ramadan
,
H. S.
,
2017
, “
Dynamic Modeling and Experimental Analysis of PEMFCs: A Comparative Study
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
1544
1557
.10.1016/j.ijhydene.2016.07.180
18.
Jagaduri
,
R. T.
, and
Radman
,
G.
,
2007
, “
Modeling and Control of Distributed Generation Systems Including PEM Fuel Cell and Gas Turbine
,”
Electric Power Syst. Res.
,
77
(
1
), pp.
83
92
.10.1016/j.epsr.2006.02.003
19.
Barelli
,
L.
,
Bidini
,
G.
,
Gallorini
,
F.
, and
Ottaviano
,
A.
,
2012
, “
Dynamic Analysis of PEMFC-Based CHP Systems for Domestic Application
,”
Appl. Energy
,
91
(
1
), pp.
13
28
.10.1016/j.apenergy.2011.09.008
20.
Yu
,
S.
,
Han
,
J.
,
Lee
,
S. M.
,
Lee
,
Y. D.
, and
Ahn
,
K. Y.
,
2010
, “
A Dynamic Model of PEMFC System for the Simulation of Residential Power Generation
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061009
.10.1115/1.4001763
21.
Cavo
,
M.
,
Gadducci
,
E.
,
Rattazzi
,
D.
,
Rivarolo
,
M.
, and
Magistri
,
L.
,
2021
, “
Dynamic Analysis of PEM Fuel Cells and Metal Hydrides on a Zero-Emission Ship: A Model-Based Approach
,”
Int. J. Hydrogen Energy
,
46
(
64
), pp.
32630
32644.
10.1016/j.ijhydene.2021.07.104
22.
Pukrushpan
,
J. T.
,
Peng
,
H.
, and
Stefanopoulou
,
A. G.
,
2004
, “
Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems
,”
ASME J. Dyn. Syst., Meas. Control, Trans. ASME
,
126
(
1
), pp.
14
25
.10.1115/1.1648308
23.
Barchewitz
,
L. P.
, and
Seume
,
J. R.
,
2007
, “
Dynamic Modelling and Controls of an Air Supply System for In-Flight Proton Exchange Membrane Fuel Cells (PEM-FC)
,”
ASME
Paper No. GT2007-27900.10.1115/GT2007-27900
24.
Maleki Bagherabadi
,
K.
,
Skjong
,
S.
, and
Pedersen
,
E.
,
2022
, “
Dynamic Modelling of PEM Fuel Cell System for Simulation and Sizing of Marine Power Systems
,”
Int. J. Hydrogen Energy
,
47
(
40
), pp.
17699
17712
.10.1016/j.ijhydene.2022.03.247
25.
Cavo
,
M.
,
Mantelli
,
L.
,
Crosa
,
S.
,
Bozzolo
,
M.
, and
Magistri
,
L.
,
2023
, “
Modelling and Control System Development of a Turbocharged Proton-Exchange Membrane Fuel Cell System
,”
ASME
Paper No. GT2023-102571.10.1115/GT2023-102571
26.
Hamelin
,
J.
,
Agbossou
,
K.
,
Laperrière
,
A.
,
Laurencelle
,
F.
, and
Bose
,
T. K.
,
2001
, “
Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications
,”
Int. J. Hydrogen Energy
,
26
(
6
), pp.
625
629
.10.1016/S0360-3199(00)00121-X
27.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2005-68101.10.1115/GT2005-68101
28.
Traverso
,
A.
,
Massardo
,
A. F.
, and
Scarpellini
,
R.
,
2006
, “
Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1935
1941
.10.1016/j.applthermaleng.2006.01.013
29.
Rabbani
,
A.
, and
Rokni
,
M.
,
2013
, “
Effect of Nitrogen Crossover on Purging Strategy in PEM Fuel Cell Systems
,”
Appl. Energy
,
111
, pp.
1061
1070
.10.1016/j.apenergy.2013.06.057
30.
Baik
,
K. D.
, and
Kim
,
M. S.
,
2011
, “
Characterization of Nitrogen Gas Crossover Through the Membrane in Proton-Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
1
), pp.
732
739
.10.1016/j.ijhydene.2010.09.046
31.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: II. Empirical Model Development
,”
J. Electrochem. Soc.
,
142
(
1
), pp.
9
15
.10.1149/1.2043959
32.
Kadylak
,
D.
, and
Mérida
,
W.
,
2010
, “
Experimental Verification of a Membrane Humidifier Model Based on the Effectiveness Method
,”
J. Power Sources
,
195
(
10
), pp.
3166
3175
.10.1016/j.jpowsour.2009.12.005
33.
Swagelok
,
2016
,
Valve Sizing Technical Bulletin
,
Swagelok
, Solon, OH.
You do not currently have access to this content.