Abstract

An aircraft engine is a complex structure for which some components can come into contact at high speed. Modeling this behavior is very complex as multiple physics must be considered. State-of-the-art methodologies usually account for permanent contact and thermal modeling. In this paper, a new approach is proposed and embeds various phenomena such as nonregular and nonlinear contact mechanics, surface rubbing, wear, and nonlinear heat transfer. A nonlinear version of Moreau–Jean algorithm is employed to compute the transient response of the system and to capture accurately the contact dynamics. Moreover, the full nonlinear coupling between the dynamics and the heating process is taken into account through both a semi-analytical formulation and the finite element (FE) method. At the contact interface, heat flux is generated by dry rubbing and flows into both interacting bodies. The heat flux partition is evaluated thanks to a coefficient that depends on the material properties of the solids in contact. The proposed method also accounts for the adhesive wear between the solids through an energetic approach. This methodology is applied to an academic, yet realistic, disk connected to a rotor shaft that is free to move axially and to rotate around its revolution axis. Gyroscopic effects and variation of the rotation velocity are included leading to a full nonlinear mechanical behavior. The disk undergoes aerodynamic load moving it to contact with a clamped free pin. The rotor shaft and the pin are both modeled as one-dimensional (1D) elastic bodies, while the rotor disk is assumed to be rigid. Through this example, the developed strategy shows its potential to compute the complete transient highly nonlinear response of the breaking phenomenon, in an acceptable time simulation.

References

1.
Jacobs
,
C.
,
Legrand
,
M.
,
Thouverez
,
F.
, and
Almeida
,
P.
,
2023
, “
Turbomachinery Transient Dynamics of Radial Rotor-Stator Contact Occurrences With Friction
,”
ASME
Paper No. GT2023-102198.10.1115/GT2023-102198
2.
Psarra
,
A.
,
2010
, “
Gas Turbine Shaft Failure Modelling Friction and Wear Modelling of Turbines in Contact
,”
Ph.D. thesis
,
Cranfield University
,
Cranfield, UK
.http://dspace.lib.cranfield.ac.uk/handle/1826/8348
3.
Capozzi
,
P.
,
Psarra
,
A.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2010
, “
A Finite Element Approach of Turbines in Contact Following a Shaft Failure Event
,”
ASME
Paper No. GT2010-23298.10.1115/GT2010-23298
4.
Rojo
,
I.
,
Psarra
,
A.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2010
, “
Evaluation of the Energy Dissipated as Friction/Heat Between Turbines Following Shaft Failure
,”
ASME
Paper No. GT2010-23302.10.1115/GT2010-23302
5.
Eryilmaz
,
I.
, and
Pachidis
,
V.
,
2019
, “
Turbine Thermomechanical Modelling During Excessive Axial Movement and Overspeed
,”
Aeronaut. J.
,
123
(
1260
), pp.
248
264
.10.1017/aer.2018.162
6.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
,
Springer Science Business Media
,
Heidelberg, Germany
.
7.
Lim
,
S.
, and
Ashby
,
M.
,
1987
, “
Overview No. 55 Wear-Mechanism Maps
,”
Acta Metall.
,
35
(
1
), pp.
1
24
.10.1016/0001-6160(87)90209-4
8.
Montgomery
,
R.
,
1976
, “
Friction and Wear at High Sliding Speeds
,”
Wear
,
36
(
3
), pp.
275
298
.10.1016/0043-1648(76)90108-3
9.
Laursen
,
T. A.
, 2003,
Computational Contact and Impact Mechanics Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
, Springer, Heidelberg, Germany.https://link.springer.com/book/10.1007/978-3-662-04864-1
10.
Wriggers
,
P.
, and
Laursen
,
T. A.
,
2006
,
Computational Contact Mechanics
, Vol. 2,
Springer
,
Heidelberg, Germany
.
11.
Meng
,
H.
, and
Ludema
,
K.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
, pp.
443
457
.10.1016/0043-1648(95)90158-2
12.
Fouvry
,
S.
,
Liskiewicz
,
T.
,
Kapsa
,
P.
,
Hannel
,
S.
, and
Sauger
,
E.
,
2003
, “
An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts
,”
Wear
,
255
(
1–6
), pp.
287
298
.10.1016/S0043-1648(03)00117-0
13.
Blok
,
H.
,
1937
, “
Les Températures de Surface dans des Conditions de Graissage Sous Extrême Pression
,”
Proceedings of the Second World Petroleum Congress
, Vol. 3, Paris, France, Paper No. WPC-2264.
14.
Jaeger
,
J. C.
,
1943
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. - R. Soc. N. S. W.
,
76
(
3
), pp.
203
224
.10.5962/p.360338
15.
Archard
,
J. F.
,
1959
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
(
6
), pp.
438
455
.10.1016/0043-1648(59)90159-0
16.
Barber
,
J.
,
1967
, “
Distribution of Heat Between Sliding Surfaces
,”
J. Mech. Eng. Sci.
,
9
(
5
), pp.
351
354
.10.1243/JMES_JOUR_1967_009_054_02
17.
Charron
,
F.
, and
Vernotte
,
P.
,
1943
,
Partage de la chaleur entre deux corps frottants
, Ed.
Blondel La Rougery
,
Paris, France
.
18.
Yevtushenko
,
A.
,
Topczewska
,
K.
, and
Zamojski
,
P.
,
2022
, “
The Heat Partition Ratio During Braking in a Functionally Graded Friction Couple
,”
Materials
,
15
(
13
), p.
4623
.10.3390/ma15134623
19.
Mondal
,
M. K.
,
Biswas
,
K.
, and
Maity
,
J.
,
2016
, “
A Transient Heat Transfer Model for Assessment of Flash Temperature During Dry Sliding Wear in a Pin-on-Disk Tribometer
,”
Metall. Mater. Trans.
,
47
(
1
), pp.
600
607
.10.1007/s11661-015-3224-6
20.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Oxford Science
,
Oxford, UK
.
21.
Moreau
,
J. J.
,
1988
, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications
,
Springer
,
Vienna, Austria
, pp.
1
82
.
22.
Jean
,
M.
,
1999
, “
The Non-Smooth Contact Dynamics Method
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3–4
), pp.
235
257
.10.1016/S0045-7825(98)00383-1
23.
Acary
,
V.
,
2013
, “
Projected Event-Capturing Time-Stepping Schemes for Nonsmooth Mechanical Systems With Unilateral Contact and Coulomb's Friction
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
224
250
.10.1016/j.cma.2012.12.012
24.
Almeida
,
P.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Leblanc
,
X.
, and
Ousty
,
J.-P.
,
2016
, “
Numerical Analysis of Bladed Disk—Casing Contact With Friction
,”
ASME J. Eng. Gas Turbines Power
,
138
, p.
122802
.10.1115/1.4033065
25.
Bowden
,
F.
, and
Tabor
,
D.
,
1950
,
The Friction and Lubrication of Solids, Part I
,
Clarendon
,
Oxford, UK
.
26.
Jahangiri
,
M.
,
Hashempour
,
M.
,
Razavizadeh
,
H.
, and
Rezaie
,
H.
,
2012
, “
A New Method to Investigate the Sliding Wear Behaviour of Materials Based on Energy Dissipation: W–25 wtCu Composite
,”
Wear
,
274–275
, pp.
175
182
.10.1016/j.wear.2011.08.023
27.
Str Mberg
,
N.
,
Johansson
,
L.
, and
Klarbring
,
A.
,
1996
, “
Derivation and Analysis of a Generalized Standard Model for Contact, Friction and Wear
,”
Int. J. Solids Struct.
,
33
(
13
), pp.
1817
1836
.10.1016/0020-7683(95)00140-9
28.
Bardon
,
J. P.
,
1994
, “
Bases physiques des conditions de contact thermique imparfait entre milieux en glissement relatif
,”
Rev. Gen. Therm.
, 386, pp.
86
91
.
29.
Dou
,
R.
,
Ge
,
T.
,
Liu
,
X.
, and
Wen
,
Z.
,
2016
, “
Effects of Contac Pressure, Interface Temperature, and Surface Roughness on Thermal Contact Conductance Between Stainless Steel Surfaces Under Atmosphere Condition
,”
Int. J. Heat Mass Transfer
,
94
, pp.
156
163
.10.1016/j.ijheatmasstransfer.2015.11.069
30.
Laraqi
,
N.
,
1996
, “
Phenomene de constriction thermique dans les contacts glissants
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3717
3724
.10.1016/0017-9310(95)00395-9
31.
Vullierme
,
J.
,
Lagarde
,
J.
, and
Cordier
,
H.
,
1979
, “
Etude de la resistance de contact entre deux materiaux en frottement—Influence de la vitesse relative de glissement
,”
Int. J. Heat Mass Transfer
,
22
(
8
), pp.
1209
1219
.10.1016/0017-9310(79)90167-4
32.
Barber
,
J.
,
1970
, “
The Conduction of Heat From Sliding Solids
,”
Int. J. Heat Mass Transfer
,
13
(
5
), pp.
857
869
.10.1016/0017-9310(70)90131-6
33.
Agazhanov
,
A. S.
,
Samoshkin
,
D.
, and
Kozlovskii
,
Y. M.
,
2019
, “
Thermophysical Properties of Inconel 718 Alloy
,”
J. Phys.: Conf. Ser.
,
1382
(
1
), p.
012175
.10.1088/1742-6596/1382/1/012175
34.
Akamatsu
,
R.
,
Ikeshoji
,
T.-T.
,
Araki
,
M.
,
Yonehara
,
M.
,
Namamura
,
K.
, and
Kyogoku
,
H.
,
2016
, “
Numerical Analysis of Thermal Deformation and Residual Stress for Selective Laser Melting Process
,”
24th Mechanical Materials/Material Processing Technology Lecture
, Nov. 24–26.10.1299/jsmemp.2016.24.431
35.
Li
,
C.
,
Karimbaev
,
R.
,
Wang
,
S.
,
Amanov
,
A.
,
Wang
,
D.
, and
Abdel Wahab
,
M.
,
2023
, “
Fretting Wear Behavior of Inconel 718 Alloy Manufactured by DED and Treated by UNSM
,”
Sci. Rep.
,
13
(
1
), p.
1308
.10.1038/s41598-023-28128-8
36.
Chen
,
L.-W.
, and
Ku
,
D.-M.
,
1992
, “
Dynamic Stability of a Cantilever Shaft-Disk System
,”
ASME J. Vib. Acoust.
,
114
(
3
), pp.
326
329
.10.1115/1.2930265
37.
Cowper
,
G.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.10.1115/1.3625046
38.
Arizmendi
,
M.
,
Veiga
,
F.
,
Jiménez
,
A.
, and
Gil Del Val
,
A.
,
2022
, “
Transient Temperature Distribution in a Rotating Cylinder Subject to a Surface Heat Source and Convective Cooling
,”
Numer. Heat Transfer A
,
82
(
11
), pp.
743
764
.10.1080/10407782.2022.2083869
39.
Laraqi
,
N.
,
Alilat
,
N.
,
de Maria
,
J. G.
, and
Baïri
,
A.
,
2009
, “
Temperature and Division of Heat in a Pin-on-Disc Frictional Device Exact Analytical Solution
,”
Wear
,
266
(
7–8
), pp.
765
770
.10.1016/j.wear.2008.08.016
40.
Hahn
,
D. W.
, and
Özişik
,
M. N.
,
2012
,
Heat Conduction
,
Wiley
,
Hoboken, NJ
.
41.
Alilat
,
N.
,
Baïri
,
A.
, and
Laraqi
,
N.
,
2004
, “
Three Dimensional Calculation of Temperature in a Rotating Disk Subjected to an Eccentric Circular Heat Source and Surface Cooling
,”
Numer. Heat Transfer A
,
46
(
2
), pp.
167
180
.10.1080/10407780490463485
42.
Yan
,
X. T.
,
2002
, “
On the Penetration Depth in Fourier Heat Conduction
,”
AIAA
Paper No. 2002-2881.10.2514/6.2002-2881
43.
Géradin
,
M.
, and
Rixen
,
D. J.
,
2014
,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
,
West Sussex, UK
.
44.
Childs
,
P.
,
2010
,
Rotating Flow
,
Elsevier
,
Amsterdam, The Netherlands
.
45.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
99
(
2
), pp.
300
306
.10.1115/1.3450685
46.
Shevchuk
,
I.
,
2000
, “
Turbulent Heat Transfer of Rotating Disk at Constant Temperature or Density of Heat Flux to the Wall
,”
High Temp.
,
38
(
3
), pp.
499
501
.10.1007/BF02756017
47.
Aus der Wiesche
,
S.
,
2007
, “
Heat Transfer From a Rotating Disk in a Parallel Air Crossflow
,”
Int. J. Therm. Sci.
,
46
(
8
), pp.
745
754
.10.1016/j.ijthermalsci.2006.10.013
48.
Stephan
,
K.
, and
Laesecke
,
A.
,
1985
, “
The Thermal Conductivity of Fluid Air
,”
J. Phys. Chem. Ref.
,
14
(
1
), pp.
227
234
.10.1063/1.555749
You do not currently have access to this content.