Abstract

This paper conducted a multi-objective optimization work for a composite internal and film cooling structure. The pitch-to-height ratio of the ribs, the inclination angle of the ribs, and the inclination angle of the film hole are chosen as the three design variables to enhance the heat transfer performance, improve the film cooling effectiveness and reduce the pressure loss of the internal channel flow. During the optimization process, the Latin hypercube sampling method is adopted to select 26 sample points from the design space. The response values with higher fidelity at the sample points are calculated using computational fluid dynamics (CFD) simulations. Among the 26 sample points, 21 are used to construct a surrogate model of each objective function while the rest of them are adopted to validate the correctness of the established surrogate model. By combining the Kriging surrogate model with a nondominated sorting genetic algorithm, the Pareto optimal front is obtained after the optimization process. Finally, comparison and analysis are conducted with respect to the cooling performance and mechanisms between the reference model and the selected three representative optimized models. Results show that the optimized three models can not only improve the film cooling effectiveness but also reduce the pressure loss of the channel flow and enhance the heat transfer. In addition, it is found that the optimized model induces an anticlockwise rotating vortex, which entrains more coolant near the target surface. The inclined ribs of the optimized models induce a secondary flow along the inclined ribs, which enhances the flow mixing and augments the heat transfer performance.

References

1.
Fox
,
R. L.
, and
Mote
,
C. D.
, Jr.
,
1972
, “
Optimization Methods for Engineering Design
,”
ASME J. Dyn. Syst., Meas., Control
,
94
(
2
), pp.
172
173
.10.1115/1.3426572
2.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2019
, “
Film Cooling Effectiveness From To Rows of Compound Angled Cylindrical Holes Using Pressure-Sensitive Paint Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
4
), p.
042202
.10.1115/1.4042777
3.
Silvia
,
R.
, and
Giovanna
,
B.
,
2018
, “
Stress-Blended Eddy Simulation of Coherent Unsteadiness in Pressure Side Film Cooling Applied to a First Stage Turbine Vane
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
9
), p.
092201
.10.1115/1.4039763
4.
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2011
, “
Surrogate Based Optimization of a Laidback Fan-Shaped Hole for Film-Cooling
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
226
238
.10.1016/j.ijheatfluidflow.2010.08.007
5.
Lee
,
K.-D.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Multi-Objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
150
159
.10.5293/IJFMS.2010.3.2.150
6.
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2010
, “
Shape Optimization of a Fan-Shaped Hole to Enhance Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2996
3005
.10.1016/j.ijheatmasstransfer.2010.03.032
7.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2009
, “
Optimization of a Cylindrical Film Cooling Hole Using Surrogate Modeling
,”
Numer. Heat Transfer, Part A Appl.
,
55
(
4
), pp.
362
380
.10.1080/10407780902720858
8.
Lee
,
K. D.
,
Choi
,
D. W.
, and
Kim
,
K. Y.
,
2013
, “
Optimization of Ejection Angles of Double-Jet Film-Cooling Holes Using RBNN Model
,”
Int. J. Therm. Sci.
,
73
, pp.
69
78
.10.1016/j.ijthermalsci.2013.05.015
9.
Zhang
,
H.
,
Li
,
Y.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Multi-Fidelity Model Based Optimization of Shaped Film Cooling Hole and Experimental Validation
,”
Int. J. Heat Mass Transfer
,
132
, pp.
118
129
.10.1016/j.ijheatmasstransfer.2018.11.156
10.
Zamiri
,
A.
,
You
,
S. J.
,
Chung
,., and
J.
,
T.
,
2020
, “
Large Eddy Simulation in the Optimization of Laidback Fan-Shaped Hole Geometry to Enhance Film-Cooling Performance
,”
Int. J. Heat Mass Transfer
,
158
, p.
120014
.10.1016/j.ijheatmasstransfer.2020.120014
11.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
6
), p.
061701
.10.1115/1.4032883
12.
Huang
,
Y.
,
Zhang
,
J. Z.
, and
Wang
,
C. H.
,
2018
, “
Shape-Optimization of Round-to-Slot Holes for Improving Film Cooling Effectiveness on a Flat Surface
,”
Heat Mass Transfer
,
54
(
6
), pp.
1741
1754
.10.1007/s00231-017-2272-4
13.
Huang
,
Y.
,
Zhang
,
J. Z.
, and
Wang
,
C. H.
,
2020
, “
Multi-Objective Optimization of Round-to-Slot Film Cooling Holes on a Flat Surface
,”
Aerosp. Sci. Technol.
,
100
, p.
105737
.10.1016/j.ast.2020.105737
14.
Zhou
,
F.
, and
Catton
,
I.
,
2011
, “
Numerical Evalution of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transfer, Part A Appl.
,
60
(
2
), pp.
107
128
.10.1080/10407782.2011.588574
15.
Yang
,
Y. T.
,
Tang
,
H. W.
, and
Wong
,
C. J.
,
2016
, “
Numerical Simulation and Optimization of Turbulent Fluids in a Three-Dimensional Angled Ribbed Channel
,”
Numer. Heat Transfer, Part A Appl.
,
70
(
5
), pp.
532
545
.10.1080/10407782.2016.1173475
16.
Ejaz
,
F.
,
Hwang
,
L. K.
, and
Kwon
,
B.
,
2020
, “
Heuistic Optimization of Ribbed Cooling Channels With Variable Length and Roughness
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
11
), p.
112902
.10.1115/1.4047835
17.
Seo
,
J. W.
,
Afzal
,
A.
, and
Kim
,
K. Y.
,
2016
, “
Efficient Multi-Objective Optimization of a Boot-Shaped Rib in a Cooling Channel
,”
Int. J. Therm. Sci.
,
106
, pp.
122
133
.10.1016/j.ijthermalsci.2016.03.015
18.
Geb
,
D.
,
Zhou
,
F.
,
DeMoulin
,
G.
, and
Catton
,
I.
,
2013
, “
Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
8
), p.
082602
.10.1115/1.4024091
19.
Kiyici
,
F.
,
Yilmazturk
,
S.
,
Arican
,
E.
,
Costa
,
E.
, and
Porziani
,
S.
,
2017
, “
U-Turn Optimization of a Ribbed Turbine Blade Cooling Channel Using a Meshless Optimization Technique
,”
AIAA
Paper No. 2017–1534.10.2514/6.2017-1534
20.
Willeke
,
S.
, and
Verstraete
,
T.
,
2015
, “
Adjoint Optimization of an Internal Cooling Channel U-Bend
,”
ASME
Paper No. GT2015-43423.10.1115/GT2015-43423
21.
Verstraete
,
T.
,
Müller
,
L.
, and
Müller
,
J.-D.
,
2017
, “
Adjoint-Based Design Optimisation of an Internal Cooling Channel U-Bend for Minimised Pressure Losses
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
10
.10.3390/ijtpp2020010
22.
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2017
, “
Investigation on the Effects of Rib Orientation Angle on the Film Cooling With Ribbed Cross-Flow Coolant Channel
,”
Int. J. Heat Mass Transfer
,
115
, pp.
379
394
.10.1016/j.ijheatmasstransfer.2017.08.063
23.
Kim
,
N. H.
, and
Webb
,
R. L.
,
1994
,
Principles of Enhanced Heat Transfer
,
Taylor Francis
,
New York
.
24.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.10.2113/gsecongeo.58.8.1246
25.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Mine Valuations and Allied Problems at the Witwatersrand
,”
J. Chem., Metall. Min. Soc. South Africa
,
52
, pp.
119
139
.https://journals.co.za/content/saimm/52/6/AJA0038223X_4792
26.
Kim
,
J. H.
, and
Kim
,
K. Y.
,
2019
, “
Shape Optimization of a Bended Film-Cooling Hole to Enhance Cooling Effectiveness
,”
J. Therm. Sci. Technol.
,
14
(
1
), p.
JTST0011
.10.1299/jtst.2019jtst0011
27.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.10.1162/evco.1994.2.3.221
28.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
International Conference on Parallel Problem Solving, Nature Berlin
, Heidelberg, pp.
849
858
.
29.
Deb
,
K.
, and
Jain
,
H.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
,”
IEEE Trans. Evol. Comput.
,
18
(
4
), pp.
577
601
.10.1109/TEVC.2013.2281535
You do not currently have access to this content.