Abstract

The purpose of this study was to develop a computational model for the laser ablation (LA) of prostate cancer, enhanced by gold-nanorods (GNRs) in a phantom-tissue system, and to explore the effect of GNRs on the ablation zone. A prostate biomimetic tissue (PBT) was prepared with different volume fractions of GNRs (i.e., 0, 1.68 × 10−7 or 8.40 × 10−7). Specifically, the computational model was built by considering the change of light properties of PBTs with and without GNRs and introducing the dynamic heat source determined by porcine liver carbonization, reported elsewhere. The computational model was then validated by comparing the simulation and the ex vivo LA experiment in terms of three performance indexes, namely, (i) the spatiotemporal temperature distribution, (ii) ablation zone, and (iii) carbonization zone, with the three volume fractions of GNRs in the PBT model, as mentioned above. Except for minor discrepancies found in the carbonization zone, the proposed model agrees with the experimental data. The effect of GNRs on LA was explored with the help of the model, and nine combinations of the laser powers and the volume fractions of GNRs were tested. The result shows that the ablation zone increases with the increase in the volume fraction of GNRs for all three laser powers used. Two conclusions can be drawn: (1) loading GNRs into the tissues may increase the ablation zone of LA, and (2) the proposed computational model is a reliable tool for predicting the spatiotemporal temperature distribution and the ablation zone of the GNR-enhanced LA.

References

1.
Wang
,
L.
,
Lu
,
B.
,
He
,
M.
,
Wang
,
Y.
,
Wang
,
Z.
, and
Du
,
L.
,
2022
, “
Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019
,”
Frontiers in Public Health
,
10
, p.
811044
.10.3389/fpubh.2022.811044
2.
Van Der Cruijsen-Koeter
,
I. W.
,
Roobol
,
M. J.
,
Wildhagen
,
M. F.
,
Van der Kwast
,
T.
,
Kirkels
,
W.
, and
Schröder
,
F. H.
,
2006
, “
Tumor Characteristics and Prognostic Factors in Two Subsequent Screening Rounds With Four-Year Interval Within Prostate Cancer Screening Trial, ERSPC Rotterdam
,”
Urology
,
68
(
3
), pp.
615
620
.10.1016/j.urology.2006.03.015
3.
Heidenreich
,
A.
,
Bastian
,
P. J.
,
Bellmunt
,
J.
,
Bolla
,
M.
,
Joniau
,
S.
,
van der Kwast
,
T.
,
Mason
,
M.
,
Matveev
,
V.
,
Wiegel
,
T.
,
Zattoni
,
F.
, and
Mottet
,
N.
,
2014
, “
EAU Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment With Curative Intent—Update 2013
,”
Eur. Urol.
,
65
(
1
), pp.
124
137
.10.1016/j.eururo.2013.09.046
4.
Ahmed
,
M.
,
Solbiati
,
L.
,
Brace
,
C. L.
,
Breen
,
D. J.
,
Callstrom
,
M. R.
,
Charboneau
,
J. W.
,
Chen
,
M.-H.
, et al.,
2014
, “
Image-Guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update
,”
Radiology
,
273
(
1
), pp.
241
260
.10.1148/radiol.14132958
5.
Schena
,
E.
,
Saccomandi
,
P.
, and
Fong
,
Y.
,
2017
, “
Laser Ablation for Cancer: Past, Present and Future
,”
J. Funct. Biomater.
,
8
(
2
), p.
19
.10.3390/jfb8020019
6.
Müller
,
G. J.
, and
Roggan
,
A.
,
1995
,
Laser-Induced Interstitial Thermotherapy
,
SPIE Press
,
Bellingham, WA
.
7.
Zhang
,
S.
,
Li
,
C.
,
Cao
,
L.
,
Moser
,
M. A.
,
Zhang
,
W.
,
Qian
,
Z.
, and
Zhang
,
B.
,
2022
, “
Modeling and Ex Vivo Experimental Validation of Liver Tissue Carbonization With Laser Ablation
,”
Comput. Methods Prog. Biomed.
,
217
, p.
106697
.10.1016/j.cmpb.2022.106697
8.
Jain
,
P. K.
,
Lee
,
K. S.
,
Sayed
,
I. E.
, and
El-Sayed
,
M. A.
,
2006
, “
Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7238
7248
.10.1021/jp057170o
9.
Huang
,
X.
,
Sayed
,
I. E.
,
Qian
,
W.
, and
El-Sayed
,
M. A.
,
2006
, “
Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods
,”
J. Am. Chem. Soc.
,
128
(
6
), pp.
2115
2120
.10.1021/ja057254a
10.
Manuchehrabadi
,
N.
,
Attaluri
,
A.
,
Cai
,
H.
,
Edziah
,
R.
,
Lalanne
,
E.
,
Bieberich
,
C.
,
Ma
,
R.
,
Johnson
,
A.
, and
Zhu
,
L.
,
2012
, “
MicroCT Imaging and In Vivo Temperature Elevations in Implanted Prostatic Tumors in Laser Photothermal Therapy Using Gold Nanorods
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
2
), p.
021003
.10.1115/1.4007161
11.
Manuchehrabadi
,
N.
,
Chen
,
Y.
,
LeBrun
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
,
2013
, “
Computational Simulation of Temperature Elevations in Tumors Using Monte Carlo Method and Comparison to Experimental Measurements in Laser Photothermal Therapy
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121007
.10.1115/1.4025388
12.
Welch
,
A. J.
, and
Van Gemert
,
M. J. C.
,
1995
, “
Introduction to Medical Applications
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
A. J.
Welch and
,
M. J. C.
Van Gemert
, eds.,
Springer US
,
Boston, MA
, pp.
609
618
.
13.
Jeynes
,
J. C. G.
,
Wordingham
,
F.
,
Moran
,
L. J.
,
Curnow
,
A.
, and
Harries
,
T. J.
,
2019
, “
Monte Carlo Simulations of Heat Deposition During Photothermal Skin Cancer Therapy Using Nanoparticles
,”
Biomolecules
,
9
(
8
), p.
343
.10.3390/biom9080343
14.
Manuchehrabadi
,
N.
,
Toughiri
,
R.
,
Bieberich
,
C.
,
Cai
,
H.
,
Attaluri
,
A.
,
Edziah
,
R.
,
Lalanne
,
E.
,
Johnson
,
A. M.
,
Ma
,
R.
, and
Zhu
,
L.
,
2013
, “
Treatment Efficacy of Laser Photothermal Therapy Using Gold Nanorods
,”
Int. J. Biomed. Eng. Technol.
,
12
(
2
), pp.
157
176
.10.1504/IJBET.2013.056508
15.
Manuchehrabadi
,
N.
, and
Zhu
,
L.
,
2014
, “
Development of a Computational Simulation Tool to Design a Protocol for Treating Prostate Tumours Using Transurethral Laser Photothermal Therapy
,”
Int. J. Hyperthermia
,
30
(
6
), pp.
349
361
.10.3109/02656736.2014.948497
16.
Soni
,
S.
,
Tyagi
,
H.
,
Taylor
,
R. A.
, and
Kumar
,
A.
,
2013
, “
Role of Optical Coefficients and Healthy Tissue-Sparing Characteristics in Gold Nanorod-Assisted Thermal Therapy
,”
Int. J. Hyperthermia
,
29
(
1
), pp.
87
97
.10.3109/02656736.2012.753162
17.
Geoghegan
,
R.
,
Santamaria
,
A.
,
Priester
,
A.
,
Zhang
,
L.
,
Wu
,
H.
,
Grundfest
,
W.
,
Marks
,
L.
, and
Natarajan
,
S.
,
2019
, “
A Tissue-Mimicking Prostate Phantom for 980 nm Laser Interstitial Thermal Therapy
,”
Int. J. Hyperthermia
,
36
(
1
), pp.
992
1001
.10.1080/02656736.2019.1660811
18.
Li
,
M.
,
Yang
,
X.
,
Ren
,
J.
,
Qu
,
K.
, and
Qu
,
X.
,
2012
, “
Using Graphene Oxide High Near‐Infrared Absorbance for Photothermal Treatment of Alzheimer's Disease
,”
Adv. Mater.
,
24
(
13
), pp.
1722
1728
.10.1002/adma.201104864
19.
Vera
,
J.
, and
Bayazitoglu
,
Y.
,
2009
, “
Gold Nanoshell Density Variation With Laser Power for Induced Hyperthermia
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
564
573
.10.1016/j.ijheatmasstransfer.2008.06.036
20.
Draine
,
B. T.
, and
Flatau
,
P. J.
,
2013
, “
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3
,” arXiv preprint
arXiv, 1305.6497
.https://doi.org/10.48550/arXiv.1305.6497
21.
Flock
,
S. T.
,
Patterson
,
M. S.
,
Wilson
,
B. C.
, and
Wyman
,
D. R.
,
1989
, “
Monte Carlo Modeling of Light Propagation in Highly Scattering Tissues. I. Model Predictions and Comparison With Diffusion Theory
,”
IEEE Trans. Biomed. Eng.
,
36
(
12
), pp.
1162
1168
.10.1109/TBME.1989.1173624
22.
Wang
,
L.
, and
Jacques
,
S. L.
,
1992
, “
Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C
,”
The University of Texas, MD Anderson Cancer Center
,
Houston, TX
.
23.
Mesicek
,
J.
, and
Kuca
,
K.
,
2018
, “
Summary of Numerical Analyses for Therapeutic Uses of Laser-Activated Gold Nanoparticles
,”
Int. J. Hyperthermia
,
34
(
8
), pp.
1255
1264
.10.1080/02656736.2018.1440016
24.
Das
,
K.
, and
Mishra
,
S. C.
,
2015
, “
Simultaneous Estimation of Size, Radial and Angular Locations of a Malignant Tumor in a 3-D Human Breast–a Numerical Study
,”
J. Therm. Biol.
,
52
, pp.
147
156
.10.1016/j.jtherbio.2015.07.001
25.
Markovic
,
M.
,
Saunders
,
L.
, and
Perriard
,
Y.
,
2006
, “
Determination of the Thermal Convection Coefficient for a Small Electric Motor
,”
Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting
, Tampa, FL, Oct. 8–12, pp.
58
61
.
26.
Mangonon
,
P. L.
, and
Thomas
,
G.
,
1970
, “
Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel
,”
Metall. Trans.
,
1
(
6
), pp.
1587
1594
.10.1007/BF02642004
27.
Jacques
,
S. L.
,
1998
, “
Light Distributions From Point, Line and Plane Sources for Photochemical Reactions and Fluorescence in Turbid Biological Tissues
,”
Photochem. Photobiol.
,
67
(
1
), pp.
23
32
.10.1111/j.1751-1097.1998.tb05161.x
28.
Fang
,
Z.
,
Moser
,
M. A.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2019
, “
Design of a Novel Electrode of Radiofrequency Ablation for Large Tumors: In Vitro Validation and Evaluation
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
031007
.10.1115/1.4042179
29.
Fang
,
Z.
,
Wei
,
H.
,
Zhang
,
H.
,
Moser
,
M. A.
,
Zhang
,
W.
,
Qian
,
Z.
, and
Zhang
,
B.
,
2022
, “
Radiofrequency Ablation for Liver Tumors Abutting Complex Blood Vessel Structures: Treatment Protocol Optimization Using Response Surface Method and Computer Modeling
,”
Int. J. Hyperthermia
,
39
(
1
), pp.
733
742
.10.1080/02656736.2022.2075567
30.
Fang
,
Z.
,
Zhang
,
B.
,
Moser
,
M.
,
Zhang
,
E.
, and
Zhang
,
W.
,
2018
, “
Design of a Novel Electrode of Radiofrequency Ablation for Large Tumors: A Finite Element Study
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
011001
.10.1115/1.4038129
31.
Xu
,
A.
,
Zhang
,
L.
,
Yuan
,
J.
,
Babikr
,
F.
,
Freywald
,
A.
,
Chibbar
,
R.
,
Moser
,
M.
,
Zhang
,
W.
,
Zhang
,
B.
,
Fu
,
Z.
, and
Xiang
,
J.
,
2019
, “
TLR9 Agonist Enhances Radiofrequency Ablation-Induced CTL Responses, Leading to the Potent Inhibition of Primary Tumor Growth and Lung Metastasis
,”
Cell. Mol. Immunol.
,
16
(
10
), pp.
820
832
.10.1038/s41423-018-0184-y
32.
Zhang
,
B.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Luo
,
Y.
,
Liu
,
C.
, and
Zhang
,
W.
,
2016
, “
A Review of Radiofrequency Ablation: Large Target Tissue Necrosis and Mathematical Modelling
,”
Phys. Med.
,
32
(
8
), pp.
961
971
.10.1016/j.ejmp.2016.07.092
33.
Chen
,
Y.
,
Moser
,
M. A.
,
Luo
,
Y.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2019
, “
Chemical Enhancement of Irreversible Electroporation: A Review and Future Suggestions
,”
Technol. Cancer Res. Treat.
,
18
, epub.10.1177/1533033819874128
34.
Fang
,
Z.
,
Chen
,
L.
,
Moser
,
M. A.
,
Zhang
,
W.
,
Qin
,
Z.
, and
Zhang
,
B.
,
2021
, “
Electroporation-Based Therapy for Brain Tumors: A Review
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
100802
.10.1115/1.4051184
35.
Zhang
,
B.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Xiang
,
J.
, and
Zhang
,
W.
,
2018
, “
An In Vitro Experimental Study of the Pulse Delivery Method in Irreversible Electroporation
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
014501
.10.1115/1.4038238
36.
Ding
,
L.
,
Moser
,
M.
,
Luo
,
Y.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2021
, “
Treatment Planning Optimization in Irreversible Electroporation for Complete Ablation of Variously Sized Cervical Tumors: A Numerical Study
,”
ASME J. Biomech. Eng.
,
143
(
1
), p.
014503
.10.1115/1.4047551
37.
Xu
,
Y.
,
Moser
,
M. A.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2019
, “
Large and Round Ablation Zones With Microwave Ablation: A Preliminary Study of an Optimal Aperiodic Tri-Slot Coaxial Antenna With the π-Matching Network Section
,”
Int. J. Therm. Sci.
,
140
, pp.
539
548
.10.1016/j.ijthermalsci.2019.03.022
38.
Fang
,
Z.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2020
, “
A Novel Method to Increase Tumor Ablation Zones With RFA by Injecting the Cationic Polymer Solution to Tissues: In Vivo and Computational Studies
,”
IEEE Trans. Biomed. Eng.
,
67
(
6
), pp.
1787
1796
.10.1109/TBME.2019.2947292
39.
Babikr
,
F.
,
Wan
,
J.
,
Xu
,
A.
,
Wu
,
Z.
,
Ahmed
,
S.
,
Freywald
,
A.
,
Chibbar
,
R.
,
Wu
,
Y.
,
Moser
,
M.
,
Groot
,
G.
,
Zhang
,
W.
,
Zhang
,
B.
, and
Xiang
,
J.
,
2021
, “
Distinct Roles but Cooperative Effect of TLR3/9 Agonists and PD-1 Blockade in Converting the Immunotolerant Microenvironment of Irreversible Electroporation-Ablated Tumors
,”
Cell. Mol. Immunol.
,
18
(
12
), pp.
2632
2647
.10.1038/s41423-021-00796-4
You do not currently have access to this content.