Abstract

The paper presents a numerical study of the heat transfer, pressure loss, and flow characteristics of swirl cooling in elliptical tubes, which are compared to the counterpart of swirl cooling in a circular tube with a diameter of D = 50.0 mm under equal passage Reynolds numbers and equal jet Reynolds numbers. The swirl tubes with two kinds of fixed tube length of 12D and 20D are compared, where there are sequentially arranged three tangential jet inlets over the leading tube length of 12D. The numerical results show that the swirl tubes with the tube length of 12D has a much better heat transfer performance. Under equal passage Reynolds numbers, the elliptical swirl tubes with the tube length of 12D show appreciably higher Nusselt numbers by up to 22.8% and lower pressure loss coefficients by up to 69.0% than the circular tube. Under equal jet Reynolds numbers, the elliptical tubes can reduce the global heat transfer performance modestly by up to 25.6%, but reduce the pressure loss much significantly by up to 70.6%. Mostly due to much less pressure loss, the elliptical tubes have remarkably higher thermal performance in terms of the obtained heat transfer coefficient per unit pumping power for both L1 = 12D and L2 = 20D. The numerical simulations indicate that the suppression of elliptical tubes on the swirling flow development reduces the heat transfer on the wall between the jet inlets, and decreases the wall shear force and the pressure loss in the tube.

References

1.
Ligrani
,
P. M.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, p.
275653
.10.1155/2013/275653
2.
Kreith
,
F.
, and
Margolis
,
D.
,
1959
, “
Heat Transfer and Friction in Turbulent Vortex Flow
,”
Appl. Sci. Res., Sect. A
,
8
(
1
), pp.
457
473
.10.1007/BF00411769
3.
Salce
,
A.
, and
Simon
,
T. W.
,
1991
, “
Investigation of the Effects of Flow Swirl on Heat Transfer Inside a Cylindrical Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
2
), pp.
348
354
.10.1115/1.2910568
4.
Aydin
,
O.
,
Avci
,
M.
,
Markal
,
B.
, and
Yazici
,
M. Y.
,
2014
, “
An Experimental Study on the Decaying Swirl Flow in a Tube
,”
Int. Commun. Heat Mass Transfer
,
55
, pp.
22
28
.10.1016/j.icheatmasstransfer.2014.04.012
5.
Bruschewski
,
M.
,
Scherhag
,
C.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
138
(
6
), p.
061005
.10.1115/1.4032363
6.
Chang
,
F.
, and
Dhir
,
V. K.
,
1994
, “
Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes
,”
Int. J. Heat Fluid Flow
,
15
(
5
), pp.
346
356
.10.1016/0142-727X(94)90048-5
7.
Chang
,
F.
, and
Dhir
,
V. K.
,
1995
, “
Mechanisms of Heat Transfer Enhancement and Slow Decay of Swirl in Tubes Using Tangential Injection
,”
Int. J. Heat Fluid Flow
,
16
(
2
), pp.
78
87
.10.1016/0142-727X(94)00016-6
8.
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Babinchak
,
B. T.
,
Thambu
,
R.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1998
, “
Flow Phenomena in Swirl Chambers
,”
Exp. Fluids
,
24
(
3
), pp.
254
264
.10.1007/s003480050172
9.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Glezer
,
B.
, and
Moon
,
H. K.
,
1999
, “
Heat Transfer in a Swirl Chamber at Different Temperature Ratios and Reynolds Numbers
,”
Int. J. Heat Mass Transf
er,
42
(
22
), pp.
4081
4091
.10.1016/S0017-9310(99)00086-1
10.
Hedlung
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
804
813
.10.1115/1.2836734
11.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
375
385
.10.1115/1.555458
12.
Wassermann
,
F.
,
Grundmann
,
S.
,
Kloss
,
M.
, and
Schiffer
,
H. P.
,
2012
, “
Swirl Flow Investigations on the Enhancement of Heat Transfer Processes in Cyclone Cooling Ducts
,”
ASME
Paper No. GT2012-69395.10.1115/GT2012-69395
13.
Rao
,
Y.
,
Biegger
,
C.
, and
Weigand
,
B.
,
2017
, “
Heat Transfer and Pressure Loss in Swirl Tubes With One and Multiple Tangential Jets Pertinent to Gas Turbine Internal Cooling
,”
Int. J. Heat Mass Transf
er,
106
, pp.
1356
1367
.10.1016/j.ijheatmasstransfer.2016.10.119
14.
Biegger
,
C.
, and
Weigand
,
B.
,
2015
, “
Flow and Heat Transfer Measurements in a Swirl Chamber With Different Outlet Geometries
,”
Exp. Fluids
,
56
(
4
), p.
78
.10.1007/s00348-015-1937-3
15.
Biegger
,
C.
,
Sotgiu
,
C.
, and
Weigand
,
B.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in a Swirl Tube
,”
Int. J. Therm. Sci.
,
96
, pp.
319
330
.10.1016/j.ijthermalsci.2014.12.001
16.
Biegger
,
C.
,
Rao
,
Y.
, and
Weigand
,
B.
,
2018
, “
Flow and Heat Transfer Measurements in Swirl Tubes With One and Multiple Tangential Inlet Jets for Internal Gas Turbine Blade Cooling
,”
Int. J. Heat Fluid Flow
,
73
, pp.
174
187
.10.1016/j.ijheatfluidflow.2018.07.011
17.
Liu
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Study of Swirl Cooling in a Turbine Blade Leading-Edge Model
,”
J. Thermophys. Heat Transfer
,
29
(
1
), pp.
166
178
.10.2514/1.T4362
18.
Liu
,
Z.
,
Li
,
J.
,
Feng
,
Z.
, and
Simon
,
T.
,
2015
, “
Numerical Study on the Effect of Jet Nozzle Aspect Ratio and Jet Angle on Swirl Cooling in a Model of a Turbine Blade Leading Edge Cooling Passage
,”
Int. J. Heat Mass Transfer
,
90
, pp.
986
1000
.10.1016/j.ijheatmasstransfer.2015.07.050
19.
Liu
,
Z.
,
Li
,
J.
,
Feng
,
Z.
, and
Simon
,
T.
,
2016
, “
Numerical Study on the Effect of Jet Spacing on the Swirl Flow and Heat Transfer in the Turbine Airfoil Leading Edge Region
,”
Numer. Heat Transfer, Part A
,
70
(
9
), pp.
980
994
.10.1080/10407782.2016.1230381
20.
Hwang
,
J. J.
, and
Cheng
,
C. S.
,
1999
, “
Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
3
), pp.
683
690
.10.1115/1.2826033
21.
Hwang
,
J. J.
, and
Chang
,
B. Y.
,
2000
, “
Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct With an Array of Tangential Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
122
(
4
), pp.
669
678
.10.1115/1.1318216
22.
Hwang
,
J. J.
, and
Cheng
,
C. S.
,
2001
, “
Impingement Cooling in Triangular Ducts Using an Array of Side-Entry Wall Jets
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1053
1063
.10.1016/S0017-9310(00)00141-1
23.
You
,
Y.
,
Seibold
,
F.
,
Wang
,
S.
,
Weigand
,
B.
, and
Gross
,
U.
,
2020
, “
URANS of Turbulent Flow and Heat Transfer in Divergent Swirl Tubes Using the kω SST Turbulence Model With Curvature Correction
,”
Int. J. Heat Mass Transfer
,
159
, p.
120088
.10.1016/j.ijheatmasstransfer.2020.120088
24.
Wang
,
J. F.
,
Du
,
C. H.
,
Wu
,
F.
,
Li
,
L.
, and
Fan
,
X. J.
,
2019
, “
Investigation of the Vortex Cooling Flow and Heat Transfer Behavior in Variable Cross-Section Vortex Chambers for Gas Turbine Blade Leading Edge
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104301
.10.1016/j.icheatmasstransfer.2019.104301
25.
Seibold
,
F.
, and
Weigand
,
B.
,
2021
, “
Numerical Analysis of the Flow Pattern in Convergent Vortex Tubes for Cyclone Cooling Applications
,”
Int. J. Heat Fluid Flow
,
90
, p.
108806
.10.1016/j.ijheatfluidflow.2021.108806
26.
Lin
,
G.
,
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Investigation on Heat Transfer Enhancement and Pressure Loss of Double Swirl Chambers Cooling
,”
Propul. Power Res.
,
2
(
3
), pp.
177
187
.10.1016/j.jppr.2013.07.003
27.
Kusterer
,
K.
,
Lin
,
G.
,
Sugimoto
,
T.
,
Bohn
,
D.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2015
, “
Novel Gas Turbine Blade Leading Edge Cooling Configuration Using Advanced Double Swirl Chambers
,”
ASME
Paper No. GT2015-42400.10.1115/GT2015-42400
28.
Seibold
,
F.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2022
, “
Flow and Heat Transfer in Swirl Tubes—A Review
,”
Int. J. Heat Mass Transfer
,
187
, p.
122455
.10.1016/j.ijheatmasstransfer.2021.122455
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
30.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
You do not currently have access to this content.