Abstract

The design of various biomedical, electronics cooling, and microfluidic devices relies on geometry-specific models and empirical correlations for flow and heat transfer through microscale pin fin geometries. Machine learning (ML) techniques are being used across many branches of science to develop more generalized surrogate models that can predict such transport processes. To collapse the simulation of flow and thermal properties across many different pin fin surfaces into a single predictive tool, the present study develops machine-learning-based surrogate models for the friction factor and Nusselt number (for constant wall temperature conditions) for fully developed low Reynolds number flow across pin fin geometries of differing cross section shape (circular, square, triangular) in aligned or staggered arrangements, oriented at any angle to the incoming flow, and for a range of transverse and longitudinal pitches, with water as the working fluid. The model training data are generated using an automated workflow that allows thousands of numerical simulations to be carried out on across different geometric and flow configurations. A total of ∼14,800 distinct simulation cases, for both friction factor and Nusselt number, are generated while varying the Reynolds number and aforementioned geometric parameters to train and test the machine learning models. The machine learning model architecture takes inputs of both image and vector data, and then outputs a scalar friction factor or Nusselt number. The trained models yield a goodness of fit (R2) value of 0.98 on unseen data.

References

1.
Yang
,
Y.
,
Chen
,
Y.
,
Tang
,
H.
,
Zong
,
N.
,
Jiang
,
X.
,
Yang
,
Y.
,
Chen
,
Y.
,
Tang
,
H.
,
Zong
,
N.
, and
Jiang
,
X. Y.
,
2020
, “
Microfluidics for Biomedical Analysis
,”
Small Methods
,
4
(
4
), p.
1900451
.10.1002/smtd.201900451
2.
Kewalramani
,
G. V.
,
Hedau
,
G.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2019
, “
Study of Laminar Single Phase Frictional Factor and Nusselt Number in In-Line Micro Pin-Fin Heat Sink for Electronic Cooling Applications
,”
Int. J. Heat Mass Transfer
,
138
, pp.
796
808
.10.1016/j.ijheatmasstransfer.2019.04.118
3.
Kesavan
,
D.
,
Senthil Kumar
,
R.
, and
Marimuthu
,
P.
,
2023
, “
Heat Transfer Performance of Air-Cooled Pin–Fin Heatsinks: A Review
,”
J. Therm. Anal. Calorim.
,
148
(
3
), pp.
623
649
.10.1007/s10973-022-11691-z
4.
Sarafraz
,
M. M.
, and
Christo
,
F. C.
,
2021
, “
Thermal and Flow Characteristics of Liquid Flow in a 3D-Printed Micro-Reactor: A Numerical and Experimental Study
,”
Appl. Therm. Eng.
,
199
, p.
117531
.10.1016/j.applthermaleng.2021.117531
5.
Qian
,
M.
,
Li
,
J.
,
Xiang
,
Z.
,
Yan
,
C.
, and
Hu
,
X.
,
2019
, “
Effect of Pin Diameter Degressive Gradient on Heat Transfer in a Microreactor With Non-Uniform Pin-Fin Array Under Low Reynolds Number Conditions
,”
Energies
,
12
(
14
), p.
2702
.10.3390/en12142702
6.
Yao
,
X.
,
Zhang
,
Y.
,
Du
,
L.
,
Liu
,
J.
, and
Yao
,
J.
,
2015
, “
Review of the Applications of Microreactors
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
519
539
.10.1016/j.rser.2015.03.078
7.
Cai
,
G.
,
Xue
,
L.
,
Zhang
,
H.
, and
Lin
,
J.
,
2017
, “
A Review on Micromixers
,”
Micromachines
,
8
(
9
), p.
274
.10.3390/mi8090274
8.
Zhang
,
S.
,
Cagney
,
N.
,
Lacassagne
,
T.
,
Balabani
,
S.
,
Naveira-Cotta
,
C. P.
, and
Tiwari
,
M. K.
,
2020
, “
Mixing in Flows Past Confined Microfluidic Cylinders: Effects of Pin and Fluid Interface Offsetting
,”
Chem. Eng. J.
,
397
, p.
125358
.10.1016/j.cej.2020.125358
9.
Cohen
,
J.
,
2016
, “
Development of Novel Tapered Pin Fin Geometries for Additive Manufacturing of Compact Heat Exchangers
,”
Master thesis
, The University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/server/api/core/bitstreams/44ec951a?16a1?4bed?8c2e?7f7941573bb6/content
10.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Thermal Performance Analysis and Optimum Design Parameters of Heat Exchanger Having Perforated Pin Fins
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1684
1695
.10.1016/j.enconman.2007.11.002
11.
Lee
,
J. S.
,
Yoon
,
S. Y.
,
Kim
,
B.
,
Lee
,
H.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2021
, “
A Topology Optimization Based Design of a Liquid-Cooled Heat Sink With Cylindrical Pin Fins Having Varying Pitch
,”
Int. J. Heat Mass Transfer
,
172
, p.
121172
.10.1016/j.ijheatmasstransfer.2021.121172
12.
Ozguc
,
S.
,
Pan
,
L.
, and
Weibel
,
J. A.
,
2021
, “
Topology Optimization of Microchannel Heat Sinks Using a Homogenization Approach
,”
Int. J. Heat Mass Transfer
,
169
, p.
120896
.10.1016/j.ijheatmasstransfer.2020.120896
13.
Ozguc
,
S.
,
Teague
,
T. F. G.
,
Pan
,
L.
, and
Weibel
,
J. A.
,
2023
, “
Experimental Study of Topology Optimized, Additively Manufactured Microchannel Heat Sinks Designed Using a Homogenization Approach
,”
Int. J. Heat Mass Transfer
,
209
, p.
124108
.10.1016/j.ijheatmasstransfer.2023.124108
14.
Mei
,
D.
,
Qian
,
M.
,
Liu
,
B.
,
Jin
,
B.
,
Yao
,
Z.
, and
Chen
,
Z.
,
2012
, “
A Micro-Reactor With Micro-Pin-Fin Arrays for Hydrogen Production Via Methanol Steam Reforming
,”
J. Power Sources
,
205
, pp.
367
376
.10.1016/j.jpowsour.2011.12.062
15.
Qian
,
M.
,
Mei
,
D.
,
Yi
,
Z.
,
Feng
,
Y.
, and
Chen
,
Z.
,
2017
, “
Fluid Flow and Heat Transfer Performance in a Micro-Reactor With Non-Uniform Micro-Pin-Fin Arrays for Hydrogen Production at Low Reynolds Number
,”
Int. J. Hydrogen Energy
,
42
(
1
), pp.
553
561
.10.1016/j.ijhydene.2016.10.150
16.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2018
, “
Review on Heat and Fluid Flow in Micro Pin Fin Heat Sinks Under Single-Phase and Two-Phase Flow Conditions
,”
Nanoscale Microscale Thermophys. Eng.
,
22
(
3
), pp.
153
197
.10.1080/15567265.2018.1475525
17.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
,
2007
, “
Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micropin-Fin Heat Sink
,”
ASME J. Electron. Packag. Trans. ASME
,
129
(
4
), pp.
479
487
.10.1115/1.2804099
18.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2007
, “
Gas-Liquid Two-Phase Flow Across a Bank of Micropillars
,”
Phys. Fluids
,
19
(
4
), p. 043302.10.1063/1.2722424
19.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
2
), pp.
141
153
.10.1115/1.2402179
20.
Roth
,
R.
,
Lenk
,
G.
,
Cobry
,
K.
, and
Woias
,
P.
,
2013
, “
Heat Transfer in Freestanding Microchannels With in-Line and Staggered Pin Fin Structures With Clearance
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1
15
.10.1016/j.ijheatmasstransfer.2013.07.097
21.
Mita
,
J.
, and
Qu
,
W.
,
2015
, “
Pressure Drop of Water Flow Across a Micro-Pin-Fin Array Part 1: Isothermal Liquid Single-Phase Flow
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1073
1082
.10.1016/j.ijheatmasstransfer.2015.06.006
22.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng. Trans. ASME
,
127
(
3
), pp.
419
430
.10.1115/1.1900139
23.
Hua
,
J.
,
Li
,
G.
,
Zhao
,
X.
,
Li
,
Q.
, and
Hu
,
J.
,
2016
, “
Study on the Flow Resistance Performance of Fluid Cross Various Shapes of Micro-Scale Pin Fin
,”
Appl. Therm. Eng.
,
107
, pp.
768
775
.10.1016/j.applthermaleng.2016.07.048
24.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
12
), p. 122402.10.1115/1.2970080
25.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3142
3155
.10.1016/j.ijheatmasstransfer.2006.02.013
26.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
27.
Chollet
,
F.
,
2021
,
Deep Learning With Python
, 2nd ed.,
Manning
, Shelter Island, New York.
28.
Bock
,
F. E.
,
Aydin
,
R. C.
,
Cyron
,
C. J.
,
Huber
,
N.
,
Kalidindi
,
S. R.
, and
Klusemann
,
B.
,
2019
, “
A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics
,”
Front. Mater.
,
6
, pp.
1
23
.10.3389/fmats.2019.00110
29.
Nasiri
,
S.
,
Khosravani
,
M. R.
, and
Weinberg
,
K.
,
2017
, “
Fracture Mechanics and Mechanical Fault Detection by Artificial Intelligence Methods: A Review
,”
Eng. Failure Anal.
,
81
, pp.
270
293
.10.1016/j.engfailanal.2017.07.011
30.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
31.
Ganti
,
H.
, and
Khare
,
P.
,
2020
, “
Data-Driven Surrogate Modeling of Multiphase Flows Using Machine Learning Techniques
,”
Comput. Fluids
,
211
, p.
104626
.10.1016/j.compfluid.2020.104626
32.
Mosavi
,
A.
,
Salimi
,
M.
,
Ardabili
,
S. F.
,
Rabczuk
,
T.
,
Shamshirband
,
S.
, and
Varkonyi-Koczy
,
A. R.
,
2019
, “
State of the Art of Machine Learning Models in Energy Systems, a Systematic Review
,”
Energies
,
12
(
7
), p.
1301
.10.3390/en12071301
33.
Amasyali
,
K.
, and
El-Gohary
,
N. M.
,
2018
, “
A Review of Data-Driven Building Energy Consumption Prediction Studies
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1192
1205
.10.1016/j.rser.2017.04.095
34.
Ghoddusi
,
H.
,
Creamer
,
G. G.
, and
Rafizadeh
,
N.
,
2019
, “
Machine Learning in Energy Economics and Finance: A Review
,”
Energy Econ.
,
81
, pp.
709
727
.10.1016/j.eneco.2019.05.006
35.
Seyedzadeh
,
S.
,
Rahimian
,
F. P.
,
Glesk
,
I.
, and
Roper
,
M.
,
2018
, “
Machine Learning for Estimation of Building Energy Consumption and Performance: A Review
,”
Visualization Eng.
,
6
, pp. 1–20.10.1186/s40327-018-0064-7
36.
Maleki
,
A.
,
Elahi
,
M.
,
Assad
,
M. E. H.
,
Alhuyi Nazari
,
M.
,
Safdari Shadloo
,
M.
, and
Nabipour
,
N.
,
2021
, “
Thermal Conductivity Modeling of Nanofluids With ZnO Particles by Using Approaches Based on Artificial Neural Network and MARS
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4261
4272
.10.1007/s10973-020-09373-9
37.
Ma
,
T.
,
Guo
,
Z.
,
Lin
,
M.
, and
Wang
,
Q.
,
2021
, “
Recent Trends on Nanofluid Heat Transfer Machine Learning Research Applied to Renewable Energy
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110494
.10.1016/j.rser.2020.110494
38.
Pai
,
S. S.
, and
Banthiya
,
A.
,
2022
, “
Transfer-Learning-Based Surrogate Model for Thermal Conductivity of Nanofluids
,” arXiv:2201.00435.
39.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
40.
Hughes
,
M. T.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Status, Challenges, and Potential for Machine Learning in Understanding and Applying Heat Transfer Phenomena
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
12
), p.
120802
.10.1115/1.4052510
41.
Kim
,
K.
,
Lee
,
H.
,
Kang
,
M.
,
Lee
,
G.
,
Jung
,
K.
,
Kharangate
,
C. R.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Lee
,
H.
,
2022
, “
A Machine Learning Approach for Predicting Heat Transfer Characteristics in Micro-Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
194
, p.
123087
.10.1016/j.ijheatmasstransfer.2022.123087
42.
Pai
,
S. S.
, and
Weibel
,
J. A.
,
2022
, “
Machine-Learning-Aided Design Optimization of Internal Flow Channel Cross-Sections
,”
Int. J. Heat Mass Transfer
,
195
, p.
123118
.10.1016/j.ijheatmasstransfer.2022.123118
43.
Pai
,
S. S.
, and
Weibel
,
J. A.
,
2023
, “
Neural Net-Based Surrogate Square Pin Fin Correlations for Thermal-Fluid Design Optimization Under Developing Flow Conditions
,”
Numer. Heat Transfer, Part B
, pp.
1
18
.10.1080/10407790.2023.2267173
44.
Upadhyay
,
A.
,
Hazra
,
S. K.
,
Assam
,
A.
, and
Raj
,
R.
,
2023
, “
Review of the Current Status and the Potential of Machine Learning Tools in Boiling Heat Transfer
,”
Numer. Heat Transfer, Part B
, pp.
1
44
.10.1080/10407790.2023.2266770
45.
Beigzadeh
,
R.
, and
Rahimi
,
M.
,
2012
, “
Prediction of Heat Transfer and Flow Characteristics in Helically Coiled Tubes Using Artificial Neural Networks
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1279
1285
.10.1016/j.icheatmasstransfer.2012.06.008
46.
Kwon
,
B.
,
Ejaz
,
F.
, and
Hwang
,
L. K.
,
2020
, “
Machine Learning for Heat Transfer Correlations
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104694
.10.1016/j.icheatmasstransfer.2020.104694
47.
Chokphoemphun
,
S.
,
Hongkong
,
S.
,
Thongdaeng
,
S.
, and
Chokphoemphun
,
S.
,
2020
, “
Experimental Study and Neural Networks Prediction on Thermal Performance Assessment of Grooved Channel Air Heater
,”
Int. J. Heat Mass Transfer
,
163
, p.
120397
.10.1016/j.ijheatmasstransfer.2020.120397
48.
Parrales
,
A.
,
Hernández-Pérez
,
J.
,
Flores
,
O.
,
Hernandez
,
H.
,
Gómez-Aguilar
,
J.
,
Escobar-Jiménez
,
R.
, and
Huicochea
,
A.
,
2019
, “
Heat Transfer Coefficients Analysis in a Helical Double-Pipe Evaporator: Nusselt Number Correlations Through Artificial Neural Networks
,”
Entropy
,
21
(
7
), p.
689
.10.3390/e21070689
49.
Islamoglu
,
Y.
, and
Kurt
,
A.
,
2004
, “
Heat Transfer Analysis Using ANNs With Experimental Data for Air Flowing in Corrugated Channels
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1361
1365
.10.1016/j.ijheatmasstransfer.2003.07.031
50.
Beigzadeh
,
R.
,
Rahimi
,
M.
,
Jafari
,
O.
, and
Alsairafi
,
A. A.
,
2016
, “
Computational Fluid Dynamics Assists the Artificial Neural Network and Genetic Algorithm Approaches for Thermal and Flow Modeling of Air-Forced Convection on Interrupted Plate Fins
,”
Numer. Heat Transfer, Part A
,
70
(
5
), pp.
546
565
.10.1080/10407782.2016.1177329
51.
Ostanek
,
J. K.
,
2013
, “
Improving Pin-Fin Heat Transfer Predictions Using Artificial Neural Networks
,”
ASME
Paper No. TURBO-13-1142.10.1115/TURBO-13-1142
52.
Acikgoz
,
O.
,
Çolak
,
A. B.
,
Camci
,
M.
,
Karakoyun
,
Y.
, and
Dalkilic
,
A. S.
,
2022
, “
Machine Learning Approach to Predict the Heat Transfer Coefficients Pertaining to a Radiant Cooling System Coupled With Mixed and Forced Convection
,”
Int. J. Therm. Sci.
,
178
, p.
107624
.10.1016/j.ijthermalsci.2022.107624
53.
Tikadar
,
A.
, and
Kumar
,
S.
,
2023
, “
Machine Learning Approach to Predict Heat Transfer and Fluid Flow Characteristics of Integrated Pin Fin-Metal Foam Heat Sink
,”
Numer. Heat Transfer, Part B
, pp.
1
26
.10.1080/10407790.2023.2266772
54.
Keramati
,
H.
,
Hamdullahpur
,
F.
, and
Barzegari
,
M.
,
2022
, “
Deep Reinforcement Learning for Heat Exchanger Shape Optimization
,”
Int. J. Heat Mass Transfer
,
194
, p.
123112
.10.1016/j.ijheatmasstransfer.2022.123112
55.
Kim
,
S.
,
Kim
,
H.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2023
, “
Gaussian Process Optimization of Phase Change Material Heat Sink Design
,”
Numer. Heat Transfer, Part B
, pp.
1
19
.10.1080/10407790.2023.2273513
56.
Wu
,
Z.
,
Zhang
,
B.
,
Yu
,
H.
,
Ren
,
J.
,
Pan
,
M.
,
He
,
C.
, and
Chen
,
Q.
,
2023
, “
Accelerating Heat Exchanger Design by Combining Physics-Informed Deep Learning and Transfer Learning
,”
Chem. Eng. Sci.
,
282
, p.
119285
.10.1016/j.ces.2023.119285
57.
Xie
,
G. N.
,
Wang
,
Q. W.
,
Zeng
,
M.
, and
Luo
,
L. Q.
,
2007
, “
Heat Transfer Analysis for Shell-and-Tube Heat Exchangers With Experimental Data by Artificial Neural Networks Approach
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
1096
1104
.10.1016/j.applthermaleng.2006.07.036
58.
Xie
,
G.
,
Sunden
,
B.
,
Wang
,
Q.
, and
Tang
,
L.
,
2009
, “
Performance Predictions of Laminar and Turbulent Heat Transfer and Fluid Flow of Heat Exchangers Having Large Tube-Diameter and Large Tube-Row by Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2484
2497
.10.1016/j.ijheatmasstransfer.2008.10.036
59.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
60.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models : A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
, p.
041012
.10.1115/1.4053800
61.
Sharma
,
P.
,
Evans
,
L.
,
Tindall
,
M.
, and
Nithiarasu
,
P.
,
2023
, “
Hyperparameter Selection for Physics-Informed Neural Networks (PINNs) – Application to Discontinuous Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
, pp.
1
15
.10.1080/10407790.2023.2264489
62.
The MathWorks Inc
,
2022
, “
MATLAB version: .9.13.0 (R2022b)
,” The MathWorks Inc., Natick, MA, accessed Nov. 5, 2024, https://www.mathworks.com
63.
ANSYS, Inc.
, 2020, “
Ansys Academic Research Fluent, Release 2020R1
,”
ANSYS, Inc
., Canonsburg, PA, accessed Dec. 1, 2022, https://www.ansys.com/products/fluids/ansys-fluent
64.
Coreform LLC
, “
Coreform Cubit (Version 2021.11) [Computer software]
,”
Coreform LLC
,
Orem, UT
, accessed Dec. 1, 2022, http://coreform.com
65.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
66.
Rosebrock
,
A.
,
2019
, “
Keras: Multiple Inputs and Mixed Data
,” PyimageSearch, Philadelphia, PA, accessed Dec. 1, 2024, https://pyimagesearch.com/2019/02/04/keras-multiple-inputs-and-mixed-data/
You do not currently have access to this content.