Abstract

In order to solve the problem that the traditional trajectory planning method cannot flexibly control the velocities and the arrival time of critical points in the trajectory, this paper proposes a non-uniform rational B-spline interpolator based on double-step signal and finite impulse response filters. The interpolator consists of two modules: a pre-processing module and a real-time interpolation module. To reduce the contour error, first, the pre-processing module scans the curve for critical points and sets their velocities according to the chord error. Then, the curve is split, and for each segment, the length and inverse length functions are calculated to eliminate the length error and enhance the real-time performance. Moreover, to control the arrival time and smooth the velocity, the real-time interpolation module generates the trajectory by processing the double-step signal with three finite impulse response filters, which satisfies the constraints of velocity, acceleration, jerk, and displacement. Simulation results indicate that the proposed interpolator can accurately reach the critical points at the set arrival time with smooth velocity and low chord error, and experimental results on a SCARA robot show that the proposed interpolator is feasible and effective.

References

1.
Piegl
,
L.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer Science & Business Media
,
Heidelberg
.
2.
Xu
,
X.
,
2006
, “
Realization of STEP-NC Enabled Machining
,”
Robot. Comput. Integr. Manuf.
,
22
(
2
), pp.
144
153
.
3.
Liu
,
M.
,
Huang
,
Y.
,
Yin
,
L.
,
Guo
,
J.
,
Shao
,
X.
, and
Zhang
,
G.
,
2014
, “
Development and Implementation of a NURBS Interpolator With Smooth Feedrate Scheduling for CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
1
15
.
4.
Yeh
,
S.-S.
, and
Hsu
,
P.-L.
,
2002
, “
Adaptive-Feedrate Interpolation for Parametric Curves With a Confined Chord Error
,”
Comput. Aided Des.
,
34
(
3
), pp.
229
237
.
5.
Zhiming
,
X.
,
Jincheng
,
C.
, and
Zhengjin
,
F.
,
2002
, “
Performance Evaluation of a Real-Time Interpolation Algorithm for NURBS Curves
,”
Int. J. Adv. Manuf. Technol.
,
20
(
4
), pp.
270
276
.
6.
Tikhon
,
M.
,
Ko
,
T. J.
,
Lee
,
S. H.
, and
Kim
,
H. S.
,
2004
, “
NURBS Interpolator for Constant Material Removal Rate in Open NC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
237
245
.
7.
Jahanpour
,
J.
, and
Alizadeh
,
M. R.
,
2015
, “
A Novel acc-Jerk-Limited NURBS Interpolation Enhanced With an Optimized S-Shaped Quintic Feedrate Scheduling Scheme
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9
), pp.
1889
1905
.
8.
Lin
,
M.-T.
,
Tsai
,
M.-S.
, and
Yau
,
H.-T.
,
2007
, “
Development of a Dynamics-Based NURBS Interpolator With Real-Time Look-Ahead Algorithm
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2246
2262
.
9.
Lee
,
A.-C.
,
Lin
,
M.-T.
,
Pan
,
Y.-R.
, and
Lin
,
W.-Y.
,
2011
, “
The Feedrate Scheduling of NURBS Interpolator for CNC Machine Tools
,”
Comput. Aided Des.
,
43
(
6
), pp.
612
628
.
10.
Tsai
,
M.-S.
,
Nien
,
H.-W.
, and
Yau
,
H.-T.
,
2011
, “
Development of Integrated Acceleration/Deceleration Look-Ahead Interpolation Technique for Multi-Blocks NURBS Curves
,”
Int. J. Adv. Manuf. Technol.
,
56
(
5
), pp.
601
618
.
11.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2012
, “
FIR Filters for Online Trajectory Planning With Time- and Frequency-Domain Specifications
,”
Control Eng. Pract.
,
20
(
12
), pp.
1385
1399
.
12.
Bonfè
,
M.
, and
Secchi
,
C.
,
2010
, “
Online Smooth Trajectory Planning for Mobile Robots by Means of Nonlinear Filters
,”
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
4299
4304
.
13.
Gerelli
,
O.
, and
Bianco
,
C. G. L.
,
2008
, “
Real-Time Path-Tracking Control of Robotic Manipulators With Bounded Torques and Torque-Derivatives
,”
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, IEEE, pp.
532
537
.
14.
Zheng
,
C.
,
Su
,
Y.
, and
Müller
,
P. C.
,
2009
, “
Simple Online Smooth Trajectory Generations for Industrial Systems
,”
Mechatronics
,
19
(
4
), pp.
571
576
.
15.
Oftadeh
,
R.
,
Ghabcheloo
,
R.
, and
Mattila
,
J.
,
2014
, “
Time Optimal Path Following With Bounded Velocities and Accelerations for Mobile Robots With Independently Steerable Wheels
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
2925
2931
.
16.
Constantinescu
,
D.
, and
Croft
,
E. A.
,
2000
, “
Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators Along Specified Paths
,”
J. Robot. Syst.
,
17
(
5
), pp.
233
249
.
17.
Liu
,
H.
,
Lai
,
X.
, and
Wu
,
W.
,
2013
, “
Time-Optimal and Jerk-Continuous Trajectory Planning for Robot Manipulators With Kinematic Constraints
,”
Robot. Comput. Integr. Manuf.
,
29
(
2
), pp.
309
317
.
18.
Rossi
,
C.
, and
Savino
,
S.
,
2013
, “
Robot Trajectory Planning by Assigning Positions and Tangential Velocities
,”
Robot. Comput. Integr. Manuf.
,
29
(
1
), pp.
139
156
.
19.
Li
,
H.
,
Le
,
M.
,
Gong
,
Z.
, and
Lin
,
W.
,
2009
, “
Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages
,”
IEEE/ASME Trans. Mechatron.
,
14
(
2
), pp.
264
269
.
20.
Lei
,
W.
,
Sung
,
M.
,
Lin
,
L.
, and
Huang
,
J.
,
2007
, “
Fast Real-Time NURBS Path Interpolation for CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
47
(
10
), pp.
1530
1541
.
You do not currently have access to this content.