Abstract

A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified through thickness infrared photoelastic images using a support vector machine-learning algorithm. Characteristic wafer strength is shown to vary with the angle of applied uniaxial tensile load, showing greater strength when loaded perpendicular to the wire speed direction than when loaded along the wire speed direction. Observed variations in characteristic strength and Weibull shape modulus with applied tensile loading direction stem from the distribution of crack orientations and the bulk stress field acting on the microcracks. Using this method, it is possible to improve manufacturing processes for silicon wafers by rapidly, accurately, and nondestructively characterizing large batches in an automated way.

References

1.
Fraunhofer Institute for Solar energy
,
2016
, “
Photovoltaics Report
,”
Freiburg, Germany
.
2.
Hilmersson
,
C.
,
Hess
,
D. P.
,
Dallas
,
W.
, and
Ostapenko
,
S.
,
2008
, “
Crack Detection in Single-Crystalline Silicon Wafers Using Impact Testing
,”
Appl. Acoust.
,
69
(
8
), pp.
755
760
.
3.
Surek
,
T.
,
2003
, “
Progress in U.S. Photovoltaics Looking Back 30 Years and Looking Ahead 20
,”
Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion
,
Osaka, Japan
,
May 11–18
, pp.
2507
2512
.
4.
Barredo
,
J.
,
Hermanns
,
L.
,
Fraile
,
A.
,
Jimeno
,
J. C.
, and
Alarcon
,
E.
,
2009
, “
Study of the Edge and Surface Cracks Influence in the Mechanical Strength of Silicon Wafers
,”
Proceedings of the 24th European Photovoltaic Solar Energy Conference
,
Hamburg, Germany
,
Sept. 21–25
, pp.
2116
2119
.
5.
Nijs
,
J. F.
,
Szlufcik
,
J.
,
Poortmans
,
J.
,
Sivoththaman
,
S.
, and
Mertens
,
R. P.
,
1999
, “
Advanced Manufacturing Concepts for Crystalline Silicon Solar Cells
,”
IEEE Trans. Electron Devices
,
46
(
10
), pp.
1948
1969
.
6.
Munzer
,
K. A.
,
Holdermann
,
K. T.
,
Schlosser
,
R. E.
, and
Sterk
,
S.
,
1999
, “
Thin Monocrystalline Silicon Solar Cells
,”
IEEE Trans. Electron Devices
,
46
(
10
), pp.
2055
2061
.
7.
Belyaev
,
A.
,
2005
, “
Stress Diagnostics and Crack Detection in Full-Size Silicon Wafers Using Resonance Ultrasonic Vibrations
,”
Ph.D. dissertation
,
University of South Florida
,
Tampa, FL
.
8.
Abdelhamid
,
M.
,
Singh
,
R.
, and
Omar
,
M.
,
2014
, “
Review of Microcrack Detection Techniques
,”
IEEE J. Photovolt.
,
4
(
1
), pp.
514
524
.
9.
Rupnowski
,
P.
, and
Sopori
,
B.
,
2009
, “
Strength of Silicon Wafers: Fracture Mechanics Approach
,”
Int. J. Fract.
,
155
(
1
), pp.
67
74
.
10.
Sopori
,
B.
,
Sheldon
,
P.
, and
Rupnowski
,
P.
,
2006
, “
Wafer Breakage Mechanism(s) and a Method for Screening 'Problem Wafers'
,”
Proceedings of the 16th Workshop on Crystalline Silicon Solar Cells and Modules
,
Denver, CO
,
Aug. 6–9
, pp.
129
138
.
11.
Möller
,
H.
,
Funke
,
C.
,
Rinio
,
M.
, and
Scholz
,
S.
,
2005
, “
Multicrystalline Silicon for Solar Cells
,”
Thin Solid Films
,
487
(
1–2
), pp.
179
187
.
12.
Pogue
,
V.
,
2016
, “
Measurement and Analysis of Wire Sawing Induced Residual Stress in Photovoltaic Silicon Wafers
,”
M.S. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
13.
Neuhaus
,
D.-H.
, and
Münzer
,
A.
,
2007
, “
Industrial Silicon Solar Cell Wafers
,”
Adv. Optoelectron.
,
2007
, pp.
1
15
.
14.
Koepge
,
R.
,
Wegert
,
F.
,
Thormann
,
S.
, and
Schoenfelder
,
S.
,
2014
, “
Characterization of Damage and Mechanical Strength of Wafers and Cells During the Cell Manufacturing Process
,”
Photovolt. Int.
,
22
, pp.
55
62
.
15.
Popovich
,
V. A.
,
Westra
,
J. M.
,
Swaaij
,
R. A. C. M. M.
,
Janssen
,
M.
,
Bennett
,
I. J.
, and
Richardson
,
I. M.
,
2011
, “
Raman Spectroscopy Characterization of Residual Stress in Multicrystalline Silicon Solar Wafers and Solar Cells: Relation to Microstructure, Defects and Processing Conditions
,”
Proceedings of the 37th IEEE Photovoltaic Specialists Conference
,
Seattle, WA
,
June 19–24
, pp.
001668
001673
.
16.
Klute
,
C.
,
Kaule
,
F.
, and
Schoenfelder
,
S.
,
2014
, “
Breakage Root Cause Analysis in As-Cut Monocrystalline Silicon Wafers
,”
Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition
,
Amsterdam
,
Sept. 22–26
, pp.
753
756
.
17.
Aßmus
,
M.
,
Nold
,
S.
,
Rein
,
S.
,
Hofmann
,
M.
,
Rentsch
,
J.
, and
Preu
,
R.
,
2012
, “
Performance Requirements of Crack Detection Systems in Silicon Solar Cell Production
,”
Energy Procedia
,
27
, pp.
147
153
.
18.
Demant
,
M.
,
Rein
,
S.
,
Krisch
,
J.
,
Schoenfelder
,
S.
,
Fischer
,
C.
,
Bartsch
,
S.
, and
Preu
,
R.
,
2011
, “
Detection and Analysis of Micro-cracks in Multi-Crystalline Silicon Wafers During Solar Cell Production
,”
Proceedings of the 37th IEEE Photovoltaic Specialists Conference
,
Seattle, WA
,
June 19–24
, pp.
001641
001646
.
19.
Ganapati
,
V.
,
Schoenfelder
,
S.
,
Castellanos
,
S.
,
Oener
,
S.
,
Koepge
,
R.
,
Sampson
,
A.
,
Marcus
,
M.
, et al
,
2010
, “
Infrared Birefringence Imaging of Residual Stress and Bulk Defects in Multicrystalline Silicon
,”
J. Appl. Phys.
,
108
(
6
), p.
063528
.
20.
Horn
,
G.
,
Lesniak
,
J.
,
Mackin
,
T.
, and
Boyce
,
B.
,
2005
, “
Infrared Grey-Field Polariscope: A Tool for Rapid Stress Analysis in Microelectronic Materials and Devices
,”
Rev. Sci. Instrum.
,
76
(
4
), p.
045108
.
21.
Skenes
,
K.
,
Kumar
,
A.
,
Prasath
,
R. G. R.
, and
Danyluk
,
S.
,
2018
, “
Crystallographic Orientation Identification in Multicrystalline Silicon Wafers Using NIR Transmission Intensity
,”
J. Electron. Mater.
,
47
(
2
), pp.
1030
1037
.
22.
He
,
S.
,
Zheng
,
T.
, and
Danyluk
,
S.
,
2004
, “
Analysis and Determination of the Stress-Optic Coefficients of Thin Single Crystal Silicon Samples
,”
J. Appl. Phys.
,
96
(
6
), pp.
3103
3109
.
23.
Weibull
,
W.
,
1939
,
A Statistical Theory of the Strength of Materials
,
Generalstabens litografiska anstalts förlag
,
Stockholm
.
24.
Courtney
,
T. H.
,
2013
,
Mechanical Behavior of Materials
,
McGraw-Hill Education
,
New Delhi, India
.
25.
Przybilla
,
C.
,
Fernandez-Canteli
,
A.
, and
Castillo
,
E.
,
2011
, “
Deriving the Primary Cumulative Distribution Function of Fracture Stress for Brittle Materials From 3- and 4-Point Bending Tests
,”
J. Eur. Ceram. Soc.
,
31
(
4
), pp.
451
460
.
26.
Li
,
X.
,
Kasai
,
T.
,
Nakao
,
S.
,
Ando
,
T.
,
Shikida
,
M.
,
Sato
,
K.
, and
Tanaka
,
H.
,
2005
, “
Anisotropy in Fracture of Single Crystal Film Characterized Under Uniaxial Tensile Condition
,”
Sens. Actuators, A
,
117
(
1
), pp.
143
150
.
27.
Shlyannikov
,
V.
, and
Tumanov
,
A.
,
2011
, “
An Inclined Surface Crack Subject to Biaxial Loading
,”
Int. J. Solids Struct.
,
48
(
11–12
), pp.
1778
1790
.
28.
Shlyannikov
,
V.
,
Kislova
,
Y. S.
, and
Tumanov
,
A.
,
2010
, “
Mode Mixity Parameters Accounting for Semi-Elliptical Surface Crack Behavior
,”
Proceedings of the 18th European Conference Fracture
,
Dresden, Germany
,
Aug. 30-Sept. 3
.
29.
Lin
,
T. W.
,
2015
, “
Characterization of Silicon Photovoltaic Wafers Using Polarized Infrared Imaging
,”
Ph.D. dissertation
,
University of Illinois
,
Urbana, IL
.
30.
Jaeger
,
J. C.
,
1945
, “
On Thermal Stresses in Circular Cylinders
,”
Philos. Mag.
,
36
(
257
), pp.
418
428
.
31.
Yang
,
C.
,
Mess
,
F.
,
Skenes
,
K.
,
Melkote
,
S.
, and
Danyluk
,
S.
,
2013
, “
On the Residual Stress and Fracture Strength of Crystalline Silicon Wafers
,”
Appl. Phys. Lett.
,
102
(
2
), pp.
1
5
.
32.
Yang
,
C.
,
Wu
,
H.
,
Melkote
,
S.
, and
Danyluk
,
S.
,
2012
, “
Comparative Analysis of Fracture Strength of Slurry and Diamond Wire Sawn Multicrystalline Silicon Solar Wafers
,”
Adv. Eng. Mater.
,
15
(
5
), pp.
358
365
.
33.
Schoenfelder
,
S.
,
Bohne
,
A.
, and
Bagdahn
,
J.
,
2007
, “
Comparison of Test Methods for Strength Characterization of Thin Solar Wafers
,”
Proceedings of European Photovoltaic Solar Energy Conference and Exhibition
.
34.
Bidiville
,
A.
,
Heiber
,
J.
,
Wasmer
,
K.
,
Habegger
,
S.
, and
Assi
,
F.
,
2010
, “
Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers
,”
Proceedings of 25th European Photovoltaic Solar Energy Conference
,
Valencia, Spain
,
Sept. 6–10
, pp.
1673
1676
.
35.
Bohne
,
A.
,
Schoenfelder
,
S.
,
Hagendorf
,
C.
,
Schmidt
,
D.
, and
Bagdahn
,
J.
,
2008
, “
The Influence of the Wire Sawing Process on Mono- and Multicrystalline Silicon Wafers
,”
Proceedings of 23rd European Photovoltaic Solar Energy Conference and Exhibition
,
Valencia, Spain
,
Sept. 1–5
, pp.
1780
1784
.
36.
Kumar
,
A.
,
Kaminski
,
S.
,
Melkote
,
S.
, and
Arcona
,
C.
,
2016
, “
Effect of Wear of Diamond Wire on Surface Morphology, Roughness and Subsurface Damage of Silicon Wafers
,”
Wear
,
364
, pp.
163
168
.
37.
Kumar
,
A.
,
Melkote
,
S. N.
,
Kaminski
,
S.
, and
Arcona
,
C.
,
2017
, “
Effect of Grit Shape and Crystal Structure on Damage in Diamond Wire Scribing of Silicon
,”
J. Am. Ceram. Soc.
,
100
(
4
), pp.
1350
1359
.
38.
Brun
,
X. F.
, and
Melkote
,
S. N.
,
2009
, “
Analysis of Stresses and Breakage of Crystalline Silicon Wafers During Handling and Transport
,”
Sol. Energy Mater. Sol. Cells
,
93
(
8
), pp.
1238
1247
.
39.
Barredo
,
J.
,
Parra
,
V.
,
Guerrero
,
I.
,
Fraile
,
A.
, and
Hermanns
,
L.
,
2014
, “
On the Mechanical Strength of Monocrystalline, Multicrystalline and Quasi-monocrystalline Silicon Wafers: A Four-Line Bending Test Study
,”
Prog. Photovolt. Res. Appl.
,
22
(
12
), pp.
1204
1212
.
40.
Pogue
,
V.
,
Melkote
,
S. N.
, and
Danyluk
,
S.
,
2018
, “
Residual Stresses in Multi-Crystalline Silicon Photovoltaic Wafers due to Casting and Wire Sawing
,”
Mater. Sci. Semicond. Process.
,
75
, pp.
173
182
.
You do not currently have access to this content.