This paper presents a trajectory planning approach and an analysis of the geometric design parameters for a planar cable-suspended translational parallel robot based on a parallelogram cable loop. The cable robot produces purely translational movements in a planar workspace. Furthermore, this special architecture only requires two actuators, which make it fully actuated. From the dynamic model of the robot, general algebraic inequalities are obtained that ensure that the cables remain taut. A general elliptic trajectory is then defined and substituted into the algebraic inequalities to obtain conditions on the geometrical design parameters that ensure that the cables are always in tension. In addition, a special trajectory-specific oscillation frequency emerges and enables the end effector to dynamically move beyond the boundaries of the static workspace, thus expanding the workspace of the mechanism. Finally, a kinematic sensitivity index is studied in order to determine if the parallelogram structure has any influence on the rotational sensitivity of the mechanism.

References

1.
Kawamura
,
S.
,
Choe
,
W.
,
Tanaka
,
S.
, and
Pandian
,
S.
,
2003
, “
Development of an Ultrahigh Speed robot FALCON Using Wire Drive System
,”
IEEE
International Conference on Robotics and Automation
,
Nagoya, Japan
,
May 21–27
, pp.
215
220
.
2.
Tadokoro
,
S.
,
Murao
,
Y.
,
Hiller
,
M.
,
Murata
,
R.
,
Kohkawa
,
H.
, and
Matsushima
,
T.
,
2002
, “
A Motion Base With 6-DOF by Parallel Cable Drive Architecture
,”
IEEE/ASME Trans. Mech.
,
7
(
2
), pp.
115
123
.
3.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mech. Eng. Rev.
,
1
(
1
), pp.
DSM0004
DSM0004
.
4.
Albus
,
J.
,
Bostelman
,
R.
, and
Dagalakis
,
N.
,
1993
, “
The NIST Robocrane
,”
J. Rob. Syst.
,
10
(
5
), pp.
709
724
.
5.
Cone
,
L. L.
,
1985
, “
Skycam—An Aerial Robotic Camera System
,”
Byte
,
10
(
10
), p.
122
.
6.
Zi
,
B.
,
Duan
,
B.
,
Du
,
J.
, and
Bao
,
H.
,
2008
, “
Dynamic Modeling and Active Control of a Cable-Suspended Parallel Robot
,”
Mechatronics
,
18
(
1
), pp.
1
12
.
7.
Gosselin
,
C.
, and
Bouchard
,
S.
,
2010
, “
A Gravity-Powered Mechanism for Extending the Workspace of a Cable-Driven Parallel Mechanism: Application to the Appearance Modelling of Objects
,”
Int. J. Autom. Technol.
,
4
(
4
), pp.
372
379
.
8.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6–6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
.
9.
Bosscher
,
P.
,
Williams
,
R. L.
, II
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
,
2007
, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
,
17
(
1
), pp.
45
55
.
10.
Gosselin
,
C.
,
Ren
,
P.
, and
Foucault
,
S.
,
2012
, “
Dynamic Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Saint Paul, MN
,
May 14–18
, pp.
1476
1481
.
11.
Jiang
,
X.
, and
Gosselin
,
C.
,
2014
, “
Dynamically Feasible Trajectories for Three-DOF Planar Cable-Suspended Parallel Robots
,”
ASME
Paper No. DETC2014-34419.
12.
Gosselin
,
C.
,
2013
, “
Global Planning of Dynamically Feasible Trajectories for Three-DOF Spatial Cable-Suspended Parallel Robots
,”
Cable-Driven Parallel Robots
,
Springer
, Berlin, pp.
3
22
.
13.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically-Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots
,”
Cable-Driven Parallel Robots
,
Springer
, Cham, Switzerland, pp.
219
230
.
14.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically Feasible Periodic Trajectories for Generic Spatial Three-Degree-of-Freedom Cable-Suspended Parallel Robots
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031004
.
15.
Zhang
,
N.
, and
Shang
,
W.
,
2016
, “
Dynamic Trajectory Planning of a 3-DOF Under-Constrained Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
98
, pp.
21
35
.
16.
Zhang
,
N.
,
Shang
,
W. W.
, and
Cong
,
S.
,
2017
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
.
17.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2018
, “
Dynamic Trajectory Planning for a Spatial 3-DOF Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
122
, pp.
177
196
.
18.
Shao
,
Z.
,
Li
,
T.
,
Tang
,
X.
,
Tang
,
L.
, and
Deng
,
H.
,
2018
, “
Research on the Dynamic Trajectory of Spatial Cable-Suspended Parallel Manipulators With Actuation Redundancy
,”
Mechatronics
,
49
, pp.
26
35
.
19.
Jiang
,
X.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2018
, “
Periodic Trajectory Planning Beyond the Static Workspace for 6-DOF Cable-Suspended Parallel Robots
,”
IEEE Trans. Rob.
,
34
(
4
), pp.
1128
1140
.
20.
Jiang
,
X.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2018
, “
Dynamic Point-to-Point Trajectory Planning Beyond the Static Workspace for Six-DOF Cable-Suspended Parallel Robots
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
781
793
.
21.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
Delta: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
22.
Pham
,
V. B. N.
, and
Kim
,
H. S.
,
2013
, “
Dynamics Analysis of a 2-DOF Planar Translational Parallel Manipulator
,”
J. Korean Soc. Manuf. Technol. Eng.
,
22
(
2
), pp.
185
191
.
23.
Yang
,
Y.
,
Peng
,
Y.
,
Pu
,
H.
, and
Cheng
,
Q.
,
2018
, “
Design of 2-Degrees-of-Freedom (DOF) Planar Translational Mechanisms With Parallel Linear Motion Elements for an Automatic Docking Device
,”
Mech. Mach. Theory
,
121
, pp.
398
424
.
24.
Behzadipour
,
S.
,
Dekker
,
R.
,
Khajepour
,
A.
, and
Chan
,
E.
,
2003
, “
Deltabot: A New Cable-Based Ultra High Speed Robot
,”
ASME
Paper No. IMECE2003-41470
.
25.
Bosscher
,
P.
,
Williams
,
R. L.
, II
, and
Tummino
,
M. A.
,
2005
, “
A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,”
ASME
Paper No. DETC2005-84324.
26.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Vanini
,
S. A. S.
, and
Alasty
,
A.
,
2009
, “
Workspace Analysis of a Three DOF Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041005
.
27.
Vu
,
D.-S.
,
Barnett
,
E.
,
Zaccarin
,
A.-M.
, and
Gosselin
,
C.
,
2018
, “
On the Design of a Three-DOF Cable-Suspended Parallel Robot Based on a Parallelogram Arrangement of the Cables
,”
Cable-Driven Parallel Robots
,
Springer
, Cham, Switzerland, pp.
319
330
.
28.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures—A Comprehensive Literature Survey
,”
J. Intell. Rob. Syst.
,
77
(
3–4
), pp.
547
570
.
29.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.
30.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory
,
132
, pp.
193
206
.
You do not currently have access to this content.