Abstract

Fatigue is a major challenge encountered in cardiovascular implant design. While the properly heat-treated Nitinol can exhibit up to 6–7% recoverable strains allowing for minimally invasive transcatheter delivery of cardiovascular implants, the cyclic in vivo loading can cause premature fracture of the implant if the fatigue strain is too high. Strain-based criteria have been adopted for the development of Nitinol fatigue resistance. Lacking experimental tools to characterize the local material fatigue strain, fatigue testing of Nitinol specimens has largely relied on the finite element analysis to compute the cyclic strain amplitude and mean strain based on experimentally derived constitutive parameters using phenomenological strain energy theory. Without a consistent computational standard, previous works have resulted in controversy and inconsistency in the impact of mean strain on the fatigue resistance of Nitinol in terms of strain amplitude limit at high cycle fatigue regime. In this paper, digital image correlation (DIC) technique is used to experimentally determine local material strains of Nitinol fatigue specimens using monotonic and cyclic loading conditions. These local strains are compared with strains computed from finite element analysis. It was found that strains from DIC and FEA are comparable in the single-phase states (pure austenitic or martensitic), whereas the measured strains can show significant difference from simulation computed strain during the transformation stage where both austenite and martensite phase co-exist. These observations have significant implications to nitinol fatigue testing and implant reliability assessment.

References

1.
Duerig
,
T.
,
Pelton
,
A.
, and
Stöckel
,
D.
,
1999
, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng. A
,
273–275
, pp.
149
160
.10.1016/S0921-5093(99)00294-4
2.
Stoeckel
,
D.
,
Pelton
,
A.
, and
Duerig
,
T.
,
2004
, “
Self-Expanding Nitinol Stents: Material and Design Considerations
,”
Eur. Radiol.
,
14
(
2
), pp.
292
301
.10.1007/s00330-003-2022-5
3.
Mahtabi
,
M. J.
,
Shamsaei
,
N.
, and
Mitchell
,
M. R.
,
2015
, “
Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
228
254
.10.1016/j.jmbbm.2015.06.010
4.
Robertson
,
S. W.
,
Pelton
,
A. R.
, and
Ritchie
,
R. O.
,
2012
, “
Mechanical Fatigue and Fracture of Nitinol
,”
Int. Mater. Rev.
,
57
(
1
), pp.
1
37
. 10.1179/1743280411Y.0000000009
5.
Senthilnathan
,
K.
,
Shamimi
,
A.
,
Bonsignore
,
C.
,
Paranjape
,
H.
, and
Duerig
,
T.
,
2019
, “
Effect of Prestrain on the Fatigue Life of Superelastic Nitinol
,”
J. Mater. Eng. Perform.
,
28
(
10
), pp.
5946
5958
.10.1007/s11665-019-04334-2
6.
Gupta
,
S.
,
Pelton
,
A. R.
,
Weaver
,
J. D.
,
Gong
,
X. Y.
, and
Nagaraja
,
S.
,
2015
, “
High Compressive Pre-Strains Reduce the Bending Fatigue Life of Nitinol Wire
,”
J. Mech. Behav. Biomed. Mater.
,
44
, pp.
96
108
.10.1016/j.jmbbm.2014.12.007
7.
USFDA,
2019
, “
Technical Considerations for Non- Clinical Assessment of Medical Devices Containing Nitinol- Draft Guidance
,” Vol.
301
, USFDA, Silver Spring, MD, p.
17
, accessed Nov. 30, 2020, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-non-clinical-assessment-medical-devices-containing-nitinol
8.
Pelton
,
A. R.
,
2011
, “
Nitinol Fatigue: A Review of Microstructures and Mechanisms
,”
J. Mater. Eng. Perform.
,
20
(
4–5
), pp.
613
617
.10.1007/s11665-011-9864-9
9.
Mahtabi
,
M. J.
, and
Shamsaei
,
N.
,
2016
, “
A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress
,”
Int. J. Mech. Sci.
,
117
, pp.
321
333
.10.1016/j.ijmecsci.2016.08.012
10.
Otsuka
,
K.
, and
Ren
,
X.
,
2005
, “
Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys
,”
Prog. Mater. Sci.
,
50
(
5
), pp.
511
678
.10.1016/j.pmatsci.2004.10.001
11.
Berti
,
F.
,
Wang
,
P. J.
,
Spagnoli
,
A.
,
Guala
,
C.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Edelman
,
E. R.
, and
Petrini
,
L.
,
2019
, “
Fatigue Behavior of Nitinol Medical Devices Under Multi-Axial Non-Proportional Loads
,”
MATEC Web Conf.
,
300
, p.
12001
.10.1051/matecconf/201930012001
12.
Melton
,
K. N.
, and
Mercier
,
O.
,
1979
, “
Fatigue of NITI Thermoelastic Martensites
,”
Acta Metall.
,
27
(
1
), pp.
137
144
.10.1016/0001-6160(79)90065-8
13.
Melton
,
K. N.
, and
Mercier
,
O.
,
1979
, “
The Effect of the Martensitic Phase Transformation on the Low Cycle Fatigue Behaviour of Polycrystalline NiTi and CuZnAl Alloys
,”
Mater. Sci. Eng.
,
40
(
1
), pp.
81
87
.10.1016/0025-5416(79)90010-7
14.
Miyazaki
,
S.
,
Kohiyama
,
Y.
,
Otsuka
,
K.
, and
Duerig
,
T.
,
1991
, “
Effects of Several Factors on the Ductility of the Ti-Ni Alloy
,”
Mater. Sci. Forum
,
56–58
, pp.
765
770
.10.4028/www.scientific.net/MSF.56-58.765
15.
Tabanli
,
R. M.
,
Simha
,
N. K.
, and
Berg
,
B. T.
,
1999
, “
Mean Stress Effects on Fatigue of NiTi
,”
Mater. Sci. Eng. A
,
273–275
, pp.
644
648
.10.1016/S0921-5093(99)00340-8
16.
Pelton
,
A. R.
,
Schroeder
,
V.
,
Mitchell
,
M. R.
,
Gong
,
X.-Y.
,
Barney
,
M.
, and
Robertson
,
S. W.
,
2008
, “
Fatigue and Durability of Nitinol Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
153
164
.10.1016/j.jmbbm.2007.08.001
17.
Pelton
,
A. R.
,
Fino-Decker
,
J.
,
Vien
,
L.
,
Bonsignore
,
C.
, and
Saffari
,
P.
,
2013
, “
Rotary-Bending Fatigue Characteristics of Medical-Grade Nitinol Wire
,”
J. Mech. Behav. Biomed. Mater.
,
27
, pp.
19
32
.10.1016/j.jmbbm.2013.06.003
18.
Lin
,
Z.
,
Pike
,
K.
,
Schlun
,
M.
,
Zipse
,
A.
, and
Draper
,
J.
,
2012
, “
Nitinol Fatigue Life for Variable Strain Amplitude Fatigue
,”
J. Mater. Eng. Perform.
,
21
(
12
), pp.
2628
2632
.10.1007/s11665-012-0387-9
19.
Catoor
,
D.
,
Ma
,
Z.
, and
Kumar
,
S.
,
2019
, “
Cyclic Response and Fatigue Failure of Nitinol Under Tension-Tension Loading
,”
J. Mater. Res.
,
34
(
20
), pp.
3504
3522
.10.1557/jmr.2019.254
20.
Morgan
,
N. B.
,
Painter
,
J.
, and
Moffat
,
A.
,
2004
, “
Mean Strain Effects and Microstructural Observations During In Vitro Fatigue Testing of NiTi
,”
Proceedings of the SMST-2003
, Vol.
79
, No. 1, Pacific Grove, CA, May 5–8, pp.
303
310
https://eprints.soton.ac.uk/49958.
21.
Pelton
,
A. R.
,
Gong
,
X.-Y.
, and
Duerig
,
T.
,
2003
, “
Fatigue Testing of Diamond‐Shaped Specimens
,” SMST, Monterey, CA, Vol.
683
, accessed Nov. 30, 2020, www.nitinol.com
22.
Rebelo
,
N.
,
Gong
,
X.
,
Hall
,
A.
,
Pelton
,
A. R.
, and
Duerig
,
T. W.
,
2004
, “
Finite Element Analysis on the Cyclic Properties of Superelastic Nitinol
,”
ABAQUS Users' Conferences
, Boston, MA, May 25–27, pp.
601
613
https://nitinol.com/wp-content/uploads/references/155_Rebelo_Gong_Hall_Pelton_Duerig_2006v2.pdf.
23.
Cao
,
H.
,
Wu
,
M. H.
,
Zhou
,
F.
,
McMeeking
,
R. M.
, and
Ritchie
,
R. O.
,
2020
, “
The Influence of Mean Strain on the High-Cycle Fatigue of Nitinol With Application to Medical Devices
,”
J. Mech. Phys. Solids
,
143
, p.
104057
.10.1016/j.jmps.2020.104057
24.
Auricchio
,
F.
, and
Taylor
,
R. L.
,
1997
, “
Shape-Memory Alloys: Modelling and Numerical Simulations of the Finite-Strain Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
143
(
1–2
), pp.
175
194
.10.1016/S0045-7825(96)01147-4
25.
Auricchio
,
F.
,
Taylor
,
R. L.
, and
Lubliner
,
J.
,
1997
, “
SHAPE-MEMORY ALLOYS: Macromodelling and Numerical Simulations of the Superelastic Behavior Universita' di Roma ‘Tor Vergata
,”
Computer Methods Applied Mechanics Engineering
, 146, pp.
281
312
https://citeseerx.ist.psu.edu/view- doc/download?doi=10.1.1.453.2874&rep=rep1&type=pdf.
26.
Rebelo
,
N.
, and
Perry
,
M.
,
2000
, “
Finite Element Analysis for the Design of Nitinol Medical Devices
,”
Minimally Invasive Therapy and Allied Technologies
, Vol.
9
,
Health Media Ltd./Isis Medical Media
, pp.
75
80
.
27.
Dordoni
,
E.
,
Petrini
,
L.
,
Wu
,
W.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2015
, “
Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?
,”
J. Funct. Biomater.
,
6
(
2
), pp.
299
317
.10.3390/jfb6020299
28.
Pelton
,
A. R.
,
Fino-Decker
,
J.
,
Vien
,
L.
,
Bonsignore
,
C.
, and
Saffari
,
P.
,
2013
, “
Author's Personal Copy Rotary-Bending Fatigue Characteristics of Medical-Grade Nitinol Wire Author's Personal Copy
,”
J. Mech. Behav. Biomed. Mater.,
27
, pp.
19
32
.
29.
Reedlunn
,
B.
,
Churchill
,
C. B.
,
Nelson
,
E. E.
,
Shaw
,
J. A.
, and
Daly
,
S. H.
,
2014
, “
Tension, Compression, and Bending of Superelastic Shape Memory Alloy Tubes
,”
J. Mech. Phys. Solids
,
63
(
1
), pp.
506
537
.10.1016/j.jmps.2012.12.012
30.
Lepage
,
W. S.
,
Ahadi
,
A.
,
Lenthe
,
W.
,
Sun
,
Q.
,
Pollock
,
T.
,
Shaw
,
J.
, and
Daly
,
S.
,
2018
, “
Grain Size Effects on NiTi Shape Memory Alloy Fatigue Crack Growth
,”
J. Mater. Res.
,
33
(
2
), pp.
91
107
.10.1557/jmr.2017.395
31.
Ahadi
,
A.
, and
Sun
,
Q.
,
2016
, “
Grain Size Dependence of Fracture Toughness and Crack-Growth Resistance of Superelastic NiTi
,”
Scr. Mater.
,
113
, pp.
171
175
.10.1016/j.scriptamat.2015.10.036
32.
Gong
,
J. Y.
, and
Daly
,
S. H.
,
2016
, “
Microscale Repeatability of the Shape-Memory Effect in Fine NiTi Wires
,”
Shape Memory Superelasticity
,
2
(
4
), pp.
298
309
.10.1007/s40830-016-0081-0
33.
Patel
,
M.
,
Plumley
,
D.
,
Bouthot
,
R.
, and
Proft
,
J.
,
2006
, “
The Effects of Varying Active Af Temperatures on the Fatigue Properties of Nitinol Wire
,”
Medical Device Materials III—Proceedings of the Materials and Processes for Medical Devices Conference 2005
, Boston, MA, Nov. 14–16, pp.
148
153
https://www.fwmetals.com/default/assets/File/MMP_ASM_MPMD.pdf.
34.
Jones
,
E. M. C.
, and
Iadicola
,
M. A.
,
2018
, “
A Good Practices Guide for Digital Image Correlation
,” International Digital Image Correlation Society, Oct. 2018.
35.
Arun Shukla
,
J. W. D.
,
2014
,
Experimental Solid Mechanics
, 2nd ed.,
College House Enterprises
, Saint Petersburg, FL.
36.
Sutton
,
M. A.
,
Orteu
,
J.-J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
, Springer, Boston, MA.
37.
Berfield
,
T. A.
,
Patel
,
J. K.
,
Shimmin
,
R. G.
,
Braun
,
P. V.
,
Lambros
,
J.
, and
Sottos
,
N. R.
,
2007
, “
Micro-and Nanoscale Deformation Measurement of Surface and Internal Planes Via Digital Image Correlation
,”
Exp. Mech.
,
47
(
1
), pp.
51
62
.10.1007/s11340-006-0531-2
38.
Lecompte
,
D.
,
Smits
,
A.
,
Bossuyt
,
S.
,
Sol
,
H.
,
Vantomme
,
J.
,
Van Hemelrijck
,
D.
, and
Habraken
,
A. M.
,
2006
, “
Quality Assessment of Speckle Patterns for Digital Image Correlation
,”
Opt. Lasers Eng.
,
44
(
11
), pp.
1132
1145
.10.1016/j.optlaseng.2005.10.004
39.
Bornert
,
M.
,
Bremand
,
F.
,
Doumalin
,
P.
,
Dupre
,
J.-C.
,
Fazzini
,
M.
,
Grediac
,
M.
,
Hild
,
F.
,
Mistou
,
S.
,
Molimard
,
J.
,
Orteu
,
J.-J.
,
Robert
,
L.
,
Surrel
,
Y.
,
Vacher
,
P.
, and
Wattrisse
,
B.
,
2009
, “
Assessment of Digital Image Correlation Measurement Errors: Methodology and Results
,”
Exp. Mech.
,
49
(
3
), pp.
353
370
.10.1007/s11340-008-9204-7
40.
Carter
,
J. L. W.
,
Uchic
,
M. D.
, and
Mills
,
M. J.
,
2014
, “
Impact of Speckle Pattern Parameters on DIC Strain Resolution Calculated From In-Situ SEM Experiments
,”
Conference Proceedings of the Society for Experimental Mechanics Series
, Vol.
66
, No. 5, Greenville, SC, July, pp.
119
126
.10.1007/978-3-319-06977-7_16
41.
Acciaioli
,
A.
,
Lionello
,
G.
, and
Baleani
,
M.
,
2018
, “
Experimentally Achievable Accuracy Using a Digital Image Correlation Technique in Measuring Small-Magnitude (<0.1%) Homogeneous Strain Fields
,”
Materials
,
11
(
5
), p.
751
.10.3390/ma11050751
42.
Yang
,
D.
,
Bornert
,
M.
,
Gharbi
,
H.
,
Valli
,
P.
, and
Wang
,
L. L.
,
2010
, “
Optimized Optical Setup for DIC in Rock Mechanics
,”
EPJ Web Conf.
,
6
, p.
22019
.10.1051/epjconf/20100622019
43.
Tan
,
Z. B
., and
Tong
,
L.
,
2017
, “
Full-Field Displacement Characterisation of TCW Joint Using Digital Image Correlation and Comparison to Numerical Models
,”
International Digital Imaging Correlation Society
,
M.
Sutton
and
P.
Reu
, eds., Springer, New York, pp.
9
15
.
44.
Crammond
,
G.
,
Boyd
,
S. W.
, and
Dulieu-Barton
,
J. M.
,
2013
, “
Speckle Pattern Quality Assessment for Digital Image Correlation
,”
Opt. Lasers Eng.
,
51
(
12
), pp.
1368
1378
.10.1016/j.optlaseng.2013.03.014
45.
Chen Z
,
H. X.
,
Xu
,
X.
, and
Wu
,
J.
,
2017
, “
Optimization of Speckle Pattern for Digital Image Correlation
,”
International Digital Imaging Correlation Society
,
M.
Sutton
and
P.
Reu
, eds., Springer, New York, pp.
29
31
.
46.
Senol
,
K.
,
Parvari
,
G.
,
Rotbaum
,
Y.
,
Eichen
,
Y.
,
Rittel
,
D.
, and
Shukla
,
A.
,
2020
, “
Mitigation of Shock Loading on Structures Using Aqueous Methylcellulose Solution
,”
Int. J. Impact Eng.
,
140
, p.
103547
.10.1016/j.ijimpeng.2020.103547
47.
Senol
,
K.
, and
Shukla
,
A.
,
2019
, “
Dynamic Response of Closed Cell PVC Foams Subjected to Underwater Shock Loading
,”
Int. J. Impact Eng.
,
130
, pp.
214
225
.10.1016/j.ijimpeng.2019.04.020
48.
Senol
,
K.
, and
Shukla
,
A.
,
2019
, “
Underwater Mechanical Behavior of Closed Cell PVC Foams Under Hydrostatic Loading Through 3D DIC Technique
,”
Polym. Test.
,
73
, pp.
72
81
.10.1016/j.polymertesting.2018.11.003
49.
Simonsen
,
M.
,
2017
, “
Strain Tensors and Criteria in Vic
,”
Correlated Solutions
, Irmo, SC.
50.
Dassault Systemes Simulia Corp
,
2017
, “
Abaqus 2017 User Manuals
,” Dassault Systemes, Providence, RI.
51.
ASTM International,
2007
, “
Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials
,” ASTM, West Conshohocken, PA, Standard No.
ASTM F2516-18
https://www.astm.org/Standards/F2516.htm.
52.
Dassault Systemes Simulia Corp,
2018
, “
Modeling stents—Best Practices
,” Dassault Systemes, Providence, RI.
53.
Dassault Systemes Simulia Corp
,
2007
, “
Simulation of Implantable Nitinol Stents
,” Dassault Systemes, Providence, RI.
54.
TripathyWu
,
S. M.
, and
Cao
,
H.
,
2019
, “
Finite Element Framework for Fatigue Performance Assessment of Superelastic Nitinol Used in Medical Devices
,”
Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices
, pp.
31
53
https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP161620180039.htm.
55.
Schneider
,
K. W.
,
Rasband
,
C. A.
, and
Eliceiri
,
W. S.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
56.
Mahtabi
,
M. J.
,
Shamsaei
,
N.
, and
Rutherford
,
B.
,
2015
, “
Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation
,”
Procedia Eng.
,
133
, pp.
646
654
.10.1016/j.proeng.2015.12.645
You do not currently have access to this content.