Abstract
This paper presents catalyst patterning techniques for promoting wafer-scale uniformity while producing taper-free high aspect ratio Si nanostructures using gold (Au) metal-assisted chemical etch (MacEtch). Typical Au nanopatterning involves the use of liftoff processes which have poor yield in manufacturing settings. We report a technique that takes advantage of adhesive forces during MacEtch to mechanically break the metal catalyst over a patterned resist. Three methods for generating increased uniformity are demonstrated—(i), (ii), (iii). Using these methods, taper-free 100 nm nanopillars are presented with wafer-scale uniformity using techniques that can be readily implemented for scalable nanomanufacturing.
Issue Section:
Research Papers
Issue Section:
Research Papers
References
1.
Madou
,
M. J.
, 2018
, Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set
,
CRC Press
,
Boca Raton, FL
.2.
Peng
,
K. Q.
,
Wang
,
X.
, and
Lee
,
S. T.
, 2009
, “
Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires
,” Appl. Phys. Lett.
,
95
(24
), p. 243112
.10.1063/1.32757943.
Li
,
X.
, 2012
, “
Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics
,” Curr. Opin. Solid State Mater. Sci.
,
16
(2
), pp. 71
–81
.10.1016/j.cossms.2011.11.0024.
Kelzenberg
,
M. D.
,
Boettcher
,
S. W.
,
Petykiewicz
,
J. A.
,
Turner-Evans
,
D. B.
,
Putnam
,
M. C.
,
Warren
,
E. L.
,
Spurgeon
,
J. M.
,
Briggs
,
R. M.
,
Lewis
,
N. S.
, and
Atwater
,
H. A.
, 2010
, “
Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications
,” Nat. Mater.
,
9
(3
), pp. 239
–244
.10.1038/nmat26355.
Mallavarapu
,
A.
,
Hrdy
,
M.
,
Castañeda
,
M.
,
Ajay
,
P.
, and
Sreenivasan
,
S. V.
, 2022
, “
Effect of Initial Conditions on Uniformity of Metal Assisted Chemical Etch for Ultra-High Aspect Ratio, Taper-Free Silicon Nanostructures
,” Proc. SPIE
,
PC12056
, p. PC120560C.10.1117/12.26042836.
Honda
,
M.
,
Katsunuma
,
T.
,
Kumakura
,
S.
,
Hisamatsu
,
T.
,
Kihara Masanobu Honda
,
Y.
, and
Kihara
,
Y.
, 2020
, “
Novel Etch Technologies Utilizing Atomic Layer Process for Advanced Patterning
,” Proc. SPIE
,
11329
(23
), p. 5
.10.1117/12.25558057.
Lian
,
Y.
, 2022
, Semiconductor Microchips and Fabrication: A Practical Guide to Theory and Manufacturing
, 1st ed.,
Wiley
,
Hoboken, NJ
.8.
Donnelly
,
V. M.
, and
Kornblit
,
A.
, 2013
, “
Plasma Etching: Yesterday, Today, and Tomorrow
,” J. Vac. Sci. Technol. A: Vac. Surf. Films
,
31
(5
), p. 50825.10.1116/1.48193169.
Chartier
,
C.
,
Bastide
,
S.
, and
Lévy-Clément
,
C.
, 2008
, “
Metal-Assisted Chemical Etching of Silicon in HF–H2O2
,” Electrochimica Acta
,
53
(17
), pp. 5509
–5516
.10.1016/j.electacta.2008.03.00910.
Kong
,
L.
,
Dasgupta
,
B.
,
Ren
,
Y.
,
Mohseni
,
P. K.
,
Hong
,
M.
,
Li
,
X.
,
Chim
,
W. K.
, and
Chiam
,
S. Y.
, 2016
, “
Evidences for Redox Reaction Driven Charge Transfer and Mass Transport in Metal-Assisted Chemical Etching of Silicon
,” Sci. Rep.
,
6
(1
), pp. 1
–13
.10.1038/srep3658211.
Li
,
X.
, and
Bonn
,
P. W.
, 2000
, “
Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon
,” Appl. Phys. Lett.
,
77
(16
), pp. 2572
–2574
.10.1063/1.131919112.
Lehmann
,
V.
, 2002
, Electrochemistry of Silicon
, Wiley-VCH, Weinheim, Germany.13.
Huo
,
C. L.
,
Wang
,
J.
,
Fu
,
H. X.
,
Li
,
X. L.
,
Yang
,
Y.
,
Wang
,
H.
,
Mateen
,
A.
,
Farid
,
G.
, and
Peng
,
K. Q.
, 2020
, “
Metal-Assisted Chemical Etching of Silicon in Oxidizing HF Solutions: Origin, Mechanism, Development, and Black Silicon Solar Cell Application
,” Adv. Funct. Mater.
,
30
(52
), p. 2005744
.10.1002/adfm.20200574414.
Yuan
,
G.
,
Aruda
,
K.
,
Zhou
,
S.
,
Levine
,
A.
,
Xie
,
J.
, and
Wang
,
D.
, 2011
, “
Understanding the Origin of the Low Performance of Chemically Grown Silicon Nanowires for Solar Energy Conversion
,” Angew. Chem. Int. Ed.
,
50
(10
), pp. 2334
–2338
.10.1002/anie.20100661715.
Peng
,
K.
,
Jie
,
J.
,
Zhang
,
W.
, and
Lee
,
S. T.
, 2008
, “
Silicon Nanowires for Rechargeable Lithium-Ion Battery Anodes
,” Appl. Phys. Lett.
,
93
(3
), p. 33105
.10.1063/1.292937316.
Sivakov
,
V. A.
,
Voigt
,
F.
,
Berger
,
A.
,
Bauer
,
G.
, and
Christiansen
,
S. H.
, 2010
, “
Roughness of Silicon Nanowire Sidewalls and Room Temperature Photoluminescence
,” Phys. Rev. B - Condens. Matter Mater. Phys.
,
82
(12
), p. 125446
.10.1103/PhysRevB.82.12544617.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
de Boor
,
J.
,
Gösele
,
U.
,
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
de Boor
,
J.
, and
Gösele
,
U.
, 2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review
,” Adv. Mater.
,
23
(2
), pp. 285
–308
.10.1002/adma.20100178418.
Green
,
T. A.
, 2014
, “
Gold Etching for Microfabrication
,” Gold Bull.
,
47
(3
), pp. 205
–216
.10.1007/s13404-014-0143-z19.
Tumashev
,
V. S.
, and
Seleznev
,
V. A.
, 2021
, “
A New Technique of Au Nanopattern Formation for Metal-Assisted Chemical Etching of Silicon
,” International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM)
, Souzga, the Altai Republic, June 30–July 4
, pp. 91
–94
.20.
Svavarsson
,
H. G.
,
Hallgrimsson
,
B. H.
,
Niraula
,
M.
,
Lee
,
K. J.
, and
Magnusson
,
R.
, 2016
, “
Large Arrays of Ultra-High Aspect Ratio Periodic Silicon Nanowires Obtained Via Top–Down Route
,” Appl. Phys. A: Mater. Sci. Process.
,
122
(2
), pp. 1
–6
.10.1007/s00339-015-9589-y21.
Lema Galindo
,
R. M.
,
Ajay
,
P.
, and
Sreenivasan
,
S. V.
, 2023
, “
Simultaneous Micro- and Nanoscale Silicon Fabrication by Metal-Assisted Chemical Etch
,” ASME J. Micro Nano-Manuf.
,
10
(3
), p. 031001
.10.1115/1.406216722.
Mallavarapu
,
A.
,
Gawlik
,
B.
,
Grigas
,
M.
,
Castañeda
,
M.
,
Abed
,
O.
,
Watts
,
M. P. C.
, and
Sreenivasan
,
S. V.
, 2021
, “
Scalable Fabrication and Metrology of Silicon Nanowire Arrays Made by Metal Assisted Chemical Etch
,” IEEE Trans. Nanotechnol.
,
20
, pp. 83
–91
.10.1109/TNANO.2020.304736623.
Huang
,
Z.
, and
Lin
,
Y.
, 2022
, “
Transfer Printing Technologies for Soft Electronics
,” Nanoscale
,
14
(45
), pp. 16749
–16760
.10.1039/D2NR04283E24.
Fourche
,
G.
, 1995
, “
An Overview of the Basic Aspects of Polymer Adhesion. Part II: Application to Surface Treatments
,” Polym. Eng. Sci.
,
35
(12
), pp. 968
–975
.10.1002/pen.76035120325.
Wendisch
,
F. J.
,
Abazari
,
M.
,
Mahdavi
,
H.
,
Rey
,
M.
,
Vogel
,
N.
,
Musso
,
M.
,
Diwald
,
O.
, and
Bourret
,
G. R.
, 2020
, “
Morphology-Graded Silicon Nanowire Arrays Via Chemical Etching: Engineering Optical Properties at the Nanoscale and Macroscale
,” ACS Appl. Mater. Interfaces
,
12
(11
), pp. 13140
–13147
.10.1021/acsami.9b2146626.
Wendisch
,
F. J.
,
Rey
,
M.
,
Vogel
,
N.
, and
Bourret
,
G. R.
, 2020
, “
Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching
,” Chem. Mater.
,
32
(21
), pp. 9425
–9434
.10.1021/acs.chemmater.0c0359327.
Choi
,
J. Y.
,
Alford
,
T. L.
, and
Honsberg
,
C. B.
, 2015
, “
Fabrication of Periodic Silicon Nanopillars in a Two-Dimensional Hexagonal Array With Enhanced Control on Structural Dimension and Period
,” Langmuir
,
31
(13
), pp. 4018
–4023
.10.1021/acs.langmuir.5b0012828.
Chang
,
S.-W.
,
Chuang
,
V. P.
,
Boles
,
S. T.
,
Ross
,
C. A.
, and
Thompson
,
C. V.
, 2009
, “
Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated Using Block-Copolymer Lithography and Metal-Assisted Etching
,” Adv. Funct. Mater.
,
19
(15
), pp. 2495
–2500
.10.1002/adfm.20090018129.
Huang
,
Z.
,
Zhang
,
X.
,
Reiche
,
M.
,
Liu
,
L.
,
Lee
,
W.
,
Shimizu
,
T.
,
Senz
,
S.
, and
Gösele
,
U.
, 2008
, “
Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching
,” Nano Lett.
,
8
(9
), pp. 3046
–3051
.10.1021/nl802324y30.
Lai
,
C. Q.
,
Cheng
,
H.
,
Choi
,
W. K.
, and
Thompson
,
C. V.
, 2013
, “
Mechanics of Catalyst Motion During Metal Assisted Chemical Etching of Silicon
,” J. Phys. Chem. C
,
117
(40
), pp. 20802
–20809
.10.1021/jp407561k31.
Li
,
L.
,
Zhang
,
G.
, and
Wong
,
C. P.
, 2015
, “
Formation of Through Silicon Vias for Silicon Interposer in Wafer Level by Metal-Assisted Chemical Etching
,” IEEE Trans. Compon., Packaging Manuf. Technol.
,
5
(8
), pp. 1039
–1049
.10.1109/TCPMT.2015.244372832.
Pan
,
C.
,
Luo
,
Z.
,
Xu
,
C.
,
Luo
,
J.
,
Liang
,
R.
,
Zhu
,
G.
,
Wu
,
W.
,
Guo
,
W.
,
Yan
,
X.
,
Xu
,
J.
,
Lin Wang
,
Z.
, and
Zhu
,
J.
, 2011
, “
Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si(1-x)Ge(x) Wires: Fabrication, Characterization, and Photovoltaic Application
,” ACS Nano
,
5
(8
), pp. 6629
–6636
.10.1021/nn202075z33.
Knechtel
,
R.
, 2015
, “
Bonding of CMOS Processed Wafers
,” Handbook of Silicon Based MEMS Materials and Technologies
, 2nd ed.,
William Andrew Publishing
,
Norwich, NY
, Chap. 33
.34.
Sreenivasan
,
S. V.
, 2017
, “
Nanoimprint Lithography Steppers for Volume Fabrication of Leading-Edge Semiconductor Integrated Circuits
,” Microsyst. Nanoeng.
,
3
(1
), pp. 1
–19
.10.1038/micronano.2017.7535.
Castañeda
,
M.
, 2020
, “
Effect of Thermal Oxide Film on Scalable Fabrication of Silicon Nanowire Arrays Using Metal Assisted Chemical Etching
,” Master's thesis, University of Texas at Austin, Austin, TX.Copyright © 2023 by ASME
You do not currently have access to this content.