Abstract

An energy harvesting dynamic vibration absorber (EHDVA) is studied to suppress undesirable vibrations in a host structure as well as to harvest electrical energy from vibrations using piezoelectric transduction. This work studies the feasibility of using vibration absorber for harvesting energy under random excitation and in presence of parametric uncertainties. A two degrees-of-freedom model is considered in the analytical formulation for the host along with the absorber. A separate equation is used for energy generation from piezoelectric material. Two studies are reported here: (i) with random excitation where the base input is considered to be Gaussian and (ii) parametric uncertainty is considered with harmonic excitation. Under random base excitation, the analytical results show that, with the proper selection of parameters, harvested electrical energy can be increased along with the reduction in vibration of the host structure. Graphs are reported showing tradeoff between harvested energy and vibration control. Whereas, Monte Carlo simulations are carried out to analyze the system with parametric uncertainty. This showed that the mean harvested power decreases with an increase in uncertainties in the natural frequency as well as damping ratio. In addition, optimal electrical parameters for obtaining maximum power for the case of uncertain parameters are also reported in this study.

References

1.
Matiko
,
J. W.
,
Grabham
,
N. J.
,
Beeby
,
S. P.
, and
Tudor
,
M. J.
,
2013
, “
Review of the Application of Energy Harvesting in Buildings
,”
Meas. Sci. Technol.
,
25
(
1
), p.
012002
.10.1088/0957-0233/25/1/012002
2.
Hannan
,
M. A.
,
Mutashar
,
S.
,
Samad
,
S. A.
, and
Hussain
,
A.
,
2014
, “
Energy Harvesting for the Implantable Biomedical Devices: Issues and Challenges
,”
Biomed. Eng. OnLine
,
13
(
1
), pp.
1
23
.10.1186/1475-925X-13-79
3.
Yang
,
C. H.
,
Song
,
Y.
,
Woo
,
M. S.
,
Eom
,
J. H.
,
Song
,
G. J.
,
Kim
,
J. H.
,
Kim
,
J.
,
Lee
,
T. H.
,
Choi
,
J. Y.
, and
Sung
,
T. H.
,
2017
, “
Feasibility Study of Impact-Based Piezoelectric Road Energy Harvester for Wireless Sensor Networks in Smart Highways
,”
Sens. Actuators A
,
261
, pp.
317
324
.10.1016/j.sna.2017.04.025
4.
Chen
,
J.
,
Qiu
,
Q.
,
Han
,
Y.
, and
Lau
,
D.
,
2019
, “
Piezoelectric Materials for Sustainable Building Structures: Fundamentals and Applications
,”
Renewable Sustainable Energy Rev.
,
101
, pp.
14
25
.10.1016/j.rser.2018.09.038
5.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Dane Quinn
,
D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), pp.
1
23
.10.1115/1.4026278
6.
Cao
,
S.
, and
Li
,
J.
,
2017
, “
A Survey on Ambient Energy Sources and Harvesting Methods for Structural Health Monitoring Applications
,”
Adv. Mech. Eng.
,
9
(
4
), pp.
1
14
.10.1177/1687814017696210
7.
Rajarathinam
,
M.
, and
Ali
,
S. F.
,
2018
, “
Investigation of a Hybrid Piezo-Electromagnetic Energy Harvester
,”
tm-Tech. Mess.
,
85
(
9
), pp.
541
552
.10.1515/teme-2017-0086
8.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2005
, “
Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
799
807
.10.1177/1045389X05056681
9.
Halvorsen
,
E.
,
2008
, “
Energy Harvesters Driven by Broadband Random Vibrations
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1061
1071
.10.1109/JMEMS.2008.928709
10.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2009
, “
Piezo-Electric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
11.
Madhav
,
C.
, and
Ali
,
S. F.
,
2016
, “
Harvesting Energy From Vibration Absorber Under Random Excitations
,”
IFAC-PapersOnLine
,
49
(
1
), pp.
807
812
.10.1016/j.ifacol.2016.03.156
12.
Siang
,
J.
,
Lim
,
M. H.
, and
Salman Leong
,
M.
,
2018
, “
Review of Vibration-Based Energy Harvesting Technology: Mechanism and Architectural Approach
,”
Int. J. Energy Res.
,
42
(
5
), pp.
1866
1893
.10.1002/er.3986
13.
Liu
,
H.
,
Zhong
,
J.
,
Lee
,
C.
,
Lee
,
S. W.
, and
Lin
,
L.
,
2018
, “
A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041306
.10.1063/1.5074184
14.
Nakano
,
K.
,
Suda
,
Y.
, and
Nakadai
,
S.
,
2003
, “
Self-Powered Active Vibration Control Using a Single Electric Actuator
,”
J. Sound Vib.
,
260
(
2
), pp.
213
235
.10.1016/S0022-460X(02)00980-X
15.
Ali
,
S. F.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), pp.
1
9
.10.1115/1.4007967
16.
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2009
, “
Self-Powered Magnetorheological Dampers
,”
ASME J. Vib. Acoust.
,
131
(
4
), pp.
1
5
.10.1115/1.3142882
17.
Chtiba
,
M. O.
,
Choura
,
S.
,
Nayfeh
,
A. H.
, and
El-Borgi
,
S.
,
2010
, “
Vibration Confinement and Energy Harvesting in Flexible Structures Using Collocated Absorbers and Piezoelectric Devices
,”
J. Sound Vib.
,
329
(
3
), pp.
261
276
.10.1016/j.jsv.2009.09.028
18.
Tang
,
X.
, and
Zuo
,
L.
,
2010
, “
Regenerative Semi-Active Control of Tall Building Vibration With Series TMDs
,”
Proceedings of the American Control Conference
,
Baltimore MD
, June 30–July 2, pp.
5094
5099
.10.1109/ACC.2010.5530485
19.
Malaji
,
P. V.
,
Rajarathinam
,
M.
,
Jaiswal
,
V.
,
Ali
,
S. F.
, and
Howard
,
I. M.
,
2019
, “
Energy Harvesting From Dynamic Vibration Pendulum Absorber
,”
Recent Advances in Structural Engineering
, Vol.
2
,
Springer
,
Singapore
, pp.
467
478
.10.1007/978-981-13-0365-4_40
20.
Ahmadabadi
,
Z. N.
, and
Khadem
,
S. E.
,
2014
, “
Nonlinear Vibration Control and Energy Harvesting of a Beam Using a Nonlinear Energy Sink and a Piezoelectric Device
,”
J. Sound Vib.
,
333
(
19
), pp.
4444
4457
.10.1016/j.jsv.2014.04.033
21.
Das
,
A. S.
, and
Santhosh
,
B.
,
2016
, “
Energy Harvesting From Nonlinear Vibration Absorbers
,”
Procedia Eng.
,
144
, pp.
653
659
.10.1016/j.proeng.2016.05.060
22.
Yuan
,
M.
,
Liu
,
K.
, and
Sadhu
,
A.
,
2018
, “
Simultaneous Vibration Suppression and Energy Harvesting With a Non-Traditional Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
29
(
8
), pp.
1748
1763
.10.1177/1045389X17754263
23.
Hendrowati
,
W.
,
Guntur
,
H. L.
, and
Daman
,
A. A.
,
2019
, “
Energy Harvesting and Vibration Reduction Analysis on Cantilever Piezoelectric Double Vibration Absorber (CPDVA) Mechanism
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
588
(
1
), p.
012047
.10.1088/1757-899X/588/1/012047
24.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publications
,
New York
.
25.
Harik
,
R. F.
, and
Issa
,
J. S.
,
2015
, “
Design of a Vibration Absorber for Harmonically Forced Damped Systems
,”
J. Vib. Control
,
21
(
9
), pp.
1810
1820
.10.1177/1077546313501928
26.
Giaralis
,
A.
, and
Taflanidis
,
A. A.
,
2018
, “
Optimal Tuned Mass-Damper-Inerter (TMDI) Design for Seismically Excited MDOF Structures With Model Uncertainties Based on Reliability Criteria
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2082
.10.1002/stc.2082
27.
Raj
,
P. R.
, and
Santhosh
,
B.
,
2019
, “
Parametric Study and Optimization of Linear and Nonlinear Vibration Absorbers Combined With Piezoelectric Energy Harvester
,”
Int. J. Mech. Sci.
,
152
, pp.
268
279
.10.1016/j.ijmecsci.2018.12.053
28.
Kremer
,
D.
, and
Liu
,
K.
,
2017
, “
A Nonlinear Energy Sink With an Energy Harvester: Harmonically Forced Responses
,”
J. Sound Vib.
,
410
, pp.
287
302
.10.1016/j.jsv.2017.08.042
29.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.10.1115/1.1368883
30.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.10.1115/1.1345524
31.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
32.
Tang
,
X.
, and
Zuo
,
L.
,
2012
, “
Simultaneous Energy Harvesting and Vibration Control of Structures With Tuned Mass Dampers
,”
J. Intell. Mater. Syst. Struct.
,
23
(
18
), pp.
2117
2127
.10.1177/1045389X12462644
33.
Brennan
,
M. J.
,
Tang
,
B.
,
Melo
,
G. P.
, and
Lopes
,
V.
,
2014
, “
An Investigation Into the Simultaneous Use of a Resonator as an Energy Harvester and a Vibration Absorber
,”
J. Sound Vib.
,
333
(
5
), pp.
1331
1343
.10.1016/j.jsv.2013.10.035
34.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
Wiley
,
New York
.
35.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.10.1063/1.3436553
36.
Ali
,
S. F.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Piezoelectric Energy Harvesting With Parametric Uncertainty
,”
Smart Mater. Struct.
,
19
(
10
), p.
105010
.10.1088/0964-1726/19/10/105010
37.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
38.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), p.
04014064
.10.1061/(ASCE)EM.1943-7889.0000780
39.
Ali
,
S. F.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitations
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.10.1063/1.3560523
40.
Stamov
,
G.
,
Akca
,
H.
, and
Stamova
,
I.
,
2013
, “
Uncertain Dynamical Systems: Analysis and Applications
,”
Abstr. Appl. Anal.
,
2013
, p.
863060
. 10.1155/2013/863060
41.
Dipak
,
S.
,
Rajarathinam
,
M.
, and
Ali
,
S. F.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorber Under Random Vibration
,”
IEEE International Conference on Control Applications (CCA)
,
Hyderabad, India
, Aug. 28–30, pp.
1241
1246
.10.1109/CCA.2013.6662922
42.
Thomson
,
W. T.
,
1996
,
Theory of Vibration With Applications
,
CRC Press
,
Boca Raton, FL
.
43.
Pennestri
,
E.
,
1998
, “
An Application of Chebyshev's Min-Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber
,”
J. Sound Vib.
,
217
(
4
), pp.
757
765
.10.1006/jsvi.1998.1805
44.
Zhu
,
S. J.
,
Zheng
,
Y. F.
, and
Fu
,
Y. M.
,
2004
, “
Analysis of Non-Linear Dynamics of a Two-Degree-of-Freedom Vibration System With Non-Linear Damping and Non-Linear Spring
,”
J. Sound Vib.
,
271
(
1–2
), pp.
15
24
.10.1016/S0022-460X(03)00249-9
45.
Brown
,
B.
, and
Singh
,
T.
,
2011
, “
Minimax Design of Vibration Absorbers for Linear Damped Systems
,”
J. Sound Vib.
,
330
(
11
), pp.
2437
2448
.10.1016/j.jsv.2010.12.002
46.
Ghosh
,
A.
, and
Basu
,
B.
,
2007
, “
A Closed-Form Optimal Tuning Criterion for TMD in Damped Structures
,”
Struct. Control Health Monit.
,
14
(
4
), pp.
681
692
.10.1002/stc.176
47.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1990
,
Random Vibration and Statistical Linearization
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.