Abstract

Reliability-based design has been a widely used methodology in the design of engineering structures. For example, the structural design standards in many countries have adopted the load and resistance factor design (LRFD) method. In recent years, the concept of resilience-based design has emerged, which additionally takes into account the posthazard functionality loss and recovery process of a structure. Under this context, the following questions naturally arise: can we establish a linkage between reliability-based design and resilience-based design? Does there exist a simple resilience-based design criterion that takes a similar form of LRFD? This paper addresses these questions, and the answer is “yes”. To this end, a new concept of structural resilience capacity is proposed, which is a generalization of structural load bearing capacity (resistance). The probabilistic characteristics (mean value, variance, probability distribution function) of resilience capacity are derived. Applying the concept of resilience capacity, this paper explicitly shows the relationship between the following four items: time-invariant reliability-, time-invariant resilience-, time-dependent reliability-, and time-dependent resilience-based design methods. Furthermore, an LRFD-like design criterion is proposed for structural resilience-based design, namely, load and resilience capacity factor design (LRCFD), whose applicability is demonstrated through an example. The LRCFD method can also be used, in conjunction with LRFD, to achieve reliability and resilience goals simultaneously of the designed structure.

References

1.
Ellingwood
,
B. R.
,
2005
, “
Risk-Informed Condition Assessment of Civil Infrastructure: State of Practice and Research Issues
,”
Struct. Infrastruct. Eng.
,
1
(
1
), pp.
7
18
.10.1080/15732470412331289341
2.
Melchers
,
R. E.
, and
Beck
,
A. T.
,
2018
,
Structural Reliability Analysis and Prediction
,
Wiley
, Hoboken, NJ.
3.
Wang
,
C.
,
2021
,
Structural Reliability and Time-Dependent Reliability
,
Springer Nature
,
Switzerland AG
.
4.
Joint Technical Committee BD-006,
2002
,
Structural Design Actions Part 0: General Principles
,
Australian/New Zealand
, Standard No. AS/NZS
1170
.0.
5.
Ministry of Housing and Urban-Rural Development,
2012
, Load Code for the Design of Building Structures, China Architecture & Building Press, Beijing, China, Chinese Standard No. GB
50009
2012
.
6.
ASCE
,
2017
,
Minimum Design Loads and Associated Criteria for Buildings and Other Structures
,
American Society of Civil Engineers
, Reston, VA, Standard No. ASCE
7
16
.
7.
Ellingwood
,
B. R.
,
2000
, “
LRFD: Implementing Structural Reliability in Professional Practice
,”
Eng. Struct.
,
22
(
2
), pp.
106
115
.10.1016/S0141-0296(98)00099-6
8.
Ayyub
,
B. M.
,
Assakkaf
,
I.
, and
Atua
,
K.
,
2000
, “
Reliability-Based Load and Resistance Factor Design (LRFD) of Hull Girders for Surface Ships
,”
Nav. Eng. J.
,
112
(
4
), pp.
279
296
.10.1111/j.1559-3584.2000.tb03337.x
9.
Ayyub
,
B. M.
,
Assakkaf
,
I. A.
,
Beach
,
J. E.
,
Melton
,
W. M.
,
Nappi
,
N.
, and
Conley
,
J. A.
,
2002
, “
Methodology for Developing Reliability-Based Load and Resistance Factor Design (LRFD) Guidelines for Ship Structures
,”
Nav. Eng. J.
,
114
(
2
), pp.
23
42
.10.1111/j.1559-3584.2002.tb00123.x
10.
Ayyub
,
B.
,
Gupta
,
A.
,
Assakkaf
,
I.
,
Shah
,
N.
,
Kotwicki
,
P.
, and
Klieo
,
A.
,
2007
, “
Development of Reliability-Based Load and Resistance Factor Design (LRFD) Methods for Piping
,”
ASME
Paper No. CRTD-86. 10.1115/CRTD-86
11.
Bathurst
,
R. J.
,
Allen
,
T. M.
, and
Nowak
,
A. S.
,
2008
, “
Calibration Concepts for Load and Resistance Factor Design (LRFD) of Reinforced Soil Walls
,”
Can. Geotech. J.
,
45
(
10
), pp.
1377
1392
.10.1139/T08-063
12.
Avrithi
,
K.
, and
Ayyub
,
B. M.
,
2009
, “
Strength Model Uncertainties of Burst, Yielding, and Excessive Bending of Piping
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031207
.10.1115/1.3109983
13.
Avrithi
,
K.
, and
Ayyub
,
B. M.
,
2010
, “
Load and Resistance Factor Design (LRFD) of Nuclear Straight Pipes for Loads That Cause Primary Stress
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021101
.10.1115/1.4000976
14.
Wang
,
C.
,
Zhang
,
H.
,
Rasmussen
,
K. J.
,
Reynolds
,
J.
, and
Yan
,
S.
,
2020
, “
System Reliability-Based Limit State Design of Support Scaffolding Systems
,”
Eng. Struct.
,
216
, p.
110677
.10.1016/j.engstruct.2020.110677
15.
Barker
,
R. M.
, and
Puckett
,
J. A.
,
2021
,
Design of Highway Bridges: An LRFD Approach
,
Wiley
, Hoboken, NJ.
16.
Stewart
,
M. G.
, and
Rosowsky
,
D. V.
,
1998
, “
Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks
,”
Struct. Saf.
,
20
(
1
), pp.
91
109
.10.1016/S0167-4730(97)00021-0
17.
Hong
,
H.
,
2000
, “
Assessment of Reliability of Aging Reinforced Concrete Structures
,”
J. Struct. Eng.
,
126
(
12
), pp.
1458
1465
.10.1061/(ASCE)0733-9445(2000)126:12(1458)
18.
Akiyama
,
M.
,
Frangopol
,
D. M.
, and
Yoshida
,
I.
,
2010
, “
Time-Dependent Reliability Analysis of Existing RC Structures in a Marine Environment Using Hazard Associated With Airborne Chlorides
,”
Eng. Struct.
,
32
(
11
), pp.
3768
3779
.10.1016/j.engstruct.2010.08.021
19.
Mori
,
Y.
, and
Ellingwood
,
B. R.
,
1993
, “
Reliability-Based Service-Life Assessment of Aging Concrete Structures
,”
J. Struct. Eng.
,
119
(
5
), pp.
1600
1621
.10.1061/(ASCE)0733-9445(1993)119:5(1600)
20.
ISO
,
2010
, “
Bases for Design of Structures – Assessment of Existing Structures
,” ISO, Geneva, Switzerland, Standard No. ISO 13822: 2010(E).
21.
Li
,
Q.
,
Wang
,
C.
, and
Ellingwood
,
B. R.
,
2015
, “
Time-Dependent Reliability of Aging Structures in the Presence of Non-Stationary Loads and Degradation
,”
Struct. Saf.
,
52
, pp.
132
141
.10.1016/j.strusafe.2014.10.003
22.
Wang
,
C.
,
Beer
,
M.
, and
Ayyub
,
B. M.
,
2021
, “
Time-Dependent Reliability of Aging Structures: Overview of Assessment Methods
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A Civ. Eng.
,
7
(
4
), p.
03121003
.10.1061/AJRUA6.0001176
23.
Park
,
J.
,
Seager
,
T. P.
, and
Rao
,
P. S. C.
,
2011
, “
Lessons in Risk-Versus Resilience-Based Design and Management
,”
Integr. Environ. Assess. Manage.
,
7
(
3
), pp.
396
399
.10.1002/ieam.228
24.
Basu
,
D.
,
Misra
,
A.
, and
Puppala
,
A. J.
,
2015
, “
Sustainability and Geotechnical Engineering: Perspectives and Review
,”
Can. Geotech. J.
,
52
(
1
), pp.
96
113
.10.1139/cgj-2013-0120
25.
Akiyama
,
M.
,
Frangopol
,
D. M.
, and
Ishibashi
,
H.
,
2020
, “
Toward Life-Cycle Reliability-, Risk-and Resilience-Based Design and Assessment of Bridges and Bridge Networks Under Independent and Interacting Hazards: Emphasis on Earthquake, Tsunami and Corrosion
,”
Struct. Infrastruct. Eng.
,
16
(
1
), pp.
26
50
.10.1080/15732479.2019.1604770
26.
Cremen
,
G.
,
Seville
,
E.
, and
Baker
,
J. W.
,
2020
, “
Modeling Post-Earthquake Business Recovery Time: An Analytical Framework
,”
Int. J. Disaster Risk Reduct.
,
42
, p.
101328
.10.1016/j.ijdrr.2019.101328
27.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O'Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.10.1193/1.1623497
28.
Attoh-Okine
,
N. O.
,
Cooper
,
A. T.
, and
Mensah
,
S. A.
,
2009
, “
Formulation of Resilience Index of Urban Infrastructure Using Belief Functions
,”
IEEE Syst. J.
,
3
(
2
), pp.
147
153
.10.1109/JSYST.2009.2019148
29.
Ayyub
,
B. M.
,
2014
, “
Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making
,”
Risk Anal.
,
34
(
2
), pp.
340
355
.10.1111/risa.12093
30.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Resilience Assessment Based on Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111404
.10.1115/1.4034109
31.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
1
(
3
), p.
04015008
.10.1061/AJRUA6.0000826
32.
Wang
,
C.
, and
Ayyub
,
B. M.
,
2022
, “
Time-Dependent Resilience of Repairable Structures Subjected to Nonstationary Load and Deterioration for Analysis and Design
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
8
(
3
), p.
04022021
.10.1061/AJRUA6.0001246
33.
Wang
,
C.
, and
Ayyub
,
B. M.
,
2022
, “
Time-Dependent Seismic Resilience of Aging Repairable Structures Considering Multiple Damage States
,”
Earthquake Eng. Resilience
,
1
(
1
), pp.
73
87
.10.1002/eer2.5
34.
Cimellaro
,
G. P.
,
Renschler
,
C.
, and
Bruneau
,
M.
,
2015
, “
Introduction to Resilience-Based Design (RBD)
,”
Computational Methods, Seismic Protection, Hybrid Testing and Resilience in Earthquake Engineering
,
Springer
, Cham, Switzerland, pp.
151
183
.
35.
Cimellaro
,
G. P.
,
Villa
,
O.
, and
Bruneau
,
M.
,
2015
, “
Resilience-Based Design of Natural Gas Distribution Networks
,”
J. Infrastruct. Syst.
,
21
(
1
), p.
05014005
.10.1061/(ASCE)IS.1943-555X.0000204
36.
Masoomi
,
H.
, and
van de Lindt
,
J. W.
,
2019
, “
Community-Resilience-Based Design of the Built Environment
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
5
(
1
), p.
04018044
.10.1061/AJRUA6.0000998
37.
Zhang
,
X.
,
Mahadevan
,
S.
,
Sankararaman
,
S.
, and
Goebel
,
K.
,
2018
, “
Resilience-Based Network Design Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
364
379
.10.1016/j.ress.2017.09.009
38.
Salem
,
S.
,
Campidelli
,
M.
,
El-Dakhakhni
,
W. W.
, and
Tait
,
M. J.
,
2018
, “
Resilience-Based Design of Urban Centres: Application to Blast Risk Assessment
,”
Sustainable Resilient Infrastruct.
,
3
(
2
), pp.
68
85
.10.1080/23789689.2017.1345256
39.
Feng
,
Q.
,
Zhao
,
X.
,
Fan
,
D.
,
Cai
,
B.
,
Liu
,
Y.
, and
Ren
,
Y.
,
2019
, “
Resilience Design Method Based on Meta-Structure: A Case Study of Offshore Wind Farm
,”
Reliab. Eng. Syst. Saf.
,
186
, pp.
232
244
.10.1016/j.ress.2019.02.024
40.
Risk and Resilience Measurement Committee
,
2019
,
Resilience-Based Performance: Next Generation Guidelines for Buildings and Lifeline Standards
,
American Society of Civil Engineers
, Reston, VA, Infrastructure Resilience Publication No. 3.
41.
FEMA
,
2012
,
Multi-Hazard Loss Estimation Methodology, Earthquake Model: Hazus-MH 2.1
,
Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division
,
Washington, DC
.
42.
Li
,
Y.
, and
Ellingwood
,
B. R.
,
2006
, “
Hurricane Damage to Residential Construction in the US: Importance of Uncertainty Modeling in Risk Assessment
,”
Eng. Struct.
,
28
(
7
), pp.
1009
1018
.10.1016/j.engstruct.2005.11.005
43.
Wang
,
C.
, and
Teh
,
L. H.
,
2022
, “
Time-Dependent Seismic Reliability of Aging Structures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
8
(
2
), p.
04022010
.10.1061/AJRUA6.0001224
44.
Baker
,
J. W.
,
2008
, “
Introducing Correlation Among Fragility Functions for Multiple Components
,”
14th World Conference on Earthquake Engineering
, Oct. 12–17, Beijing, China, pp.
1
8
.
45.
Wang
,
C.
, and
Zhang
,
H.
,
2020
, “
Assessing the Seismic Resilience of Power Grid Systems Considering the Component Deterioration and Correlation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B Mech. Eng.
,
6
(
2
), p.
020903
.10.1115/1.4046394
46.
Wang
,
C.
,
Zhang
,
H.
,
Ellingwood
,
B. R.
,
Guo
,
Y.
,
Mahmoud
,
H.
, and
Li
,
Q.
,
2021
, “
Assessing Post-Hazard Damage Costs to a Community's Residential Buildings Exposed to Tropical Cyclones
,”
Struct. Infrastruct. Eng.
,
17
(
4
), pp.
443
453
.10.1080/15732479.2020.1845215
47.
Ghosh
,
J.
, and
Padgett
,
J. E.
,
2010
, “
Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves
,”
J. Struct. Eng.
,
136
(
12
), pp.
1497
1511
.10.1061/(ASCE)ST.1943-541X.0000260
48.
Ross
,
S. M.
,
2014
,
Introduction to Probability Models
, 11th ed.,
Academic Press, Oxford, UK
.
49.
Nielson
,
B. G.
, and
DesRoches
,
R.
,
2007
, “
Analytical Seismic Fragility Curves for Typical Bridges in the Central and Southeastern United States
,”
Earthquake Spectra
,
23
(
3
), pp.
615
633
.10.1193/1.2756815
50.
Mackie
,
K.
, and
Stojadinović
,
B.
,
2006
, “
Post-Earthquake Functionality of Highway Overpass Bridges
,”
Earthquake Eng. Struct. Dyn.
,
35
(
1
), pp.
77
93
.10.1002/eqe.534
51.
Ellingwood
,
B. R.
, and
Hwang
,
H.
,
1985
, “
Probabilistic Descriptions of Resistance of Safety-Related Structures in Nuclear Plants
,”
Nucl. Eng. Des.
,
88
(
2
), pp.
169
178
.10.1016/0029-5493(85)90059-7
52.
Ellingwood
,
B. R.
, Galambos, T. V., MacGregor, J. G., and Cornell, C. A.,
1980
,
Development of a Probability Based Load Criterion for American National Standard A58: Building Code Requirements for Minimum Design Loads in Buildings and Other Structures
,
Department of Commerce, National Bureau of Standards, Washington, DC, NBS Special Publication No. 577
.
53.
Salomon
,
J.
,
Broggi
,
M.
,
Kruse
,
S.
,
Weber
,
S.
, and
Beer
,
M.
,
2020
, “
Resilience Decision-Making for Complex Systems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B Mech. Eng.
,
6
(
2
), p.
020901
.10.1115/1.4044907
54.
Salomon
,
J.
,
Behrensdorf
,
J.
,
Winnewisser
,
N.
,
Broggi
,
M.
, and
Beer
,
M.
,
2022
, “
Multidimensional Resilience Decision-Making for Complex and Substructured Systems
,”
Resilient Cities Struct.
,
1
(
3
), pp.
61
78
.10.1016/j.rcns.2022.10.005
You do not currently have access to this content.