A novel solar-hybrid gas turbine combined cycle was proposed. The cycle integrates methanol-fueled chemical-looping combustion and solar thermal energy at around 200°C, and it was investigated with the aid of the energy-utilization diagram (EUD). Solar thermal energy, at approximately 150°C300°C, is utilized to drive the reduction in Fe2O3 with methanol in the reduction reactor, and is converted into chemical energy associated with the solid fuel FeO. Then it is released as high-temperature thermal energy during the oxidation of FeO in the oxidation reactor to generate electricity through the combined cycle. As a result, the exergy efficiency of the proposed solar thermal cycle may reach 58.4% at a turbine inlet temperature of 1400°C, and the net solar-to-electric efficiency would be expected to be 22.3%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2 capture with low energy penalty.

1.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
, 1995, “
Solar Thermal Production of Zinc and Syngas via Combined ZnO-Reduction and CH4 Reforming Process
,”
Int. J. Hydrogen Energy
0360-3199,
20
, pp.
793
804
.
2.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
, 1998, “
A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas
,”
Energy
0360-5442,
23
, pp.
803
814
.
3.
Abanades
,
S.
, and
Flamant
,
G.
, 2008, “
Hydrogen Production From Solar Thermal Dissociation of Methane in a High-Temperature Fluid-Wall Chemical Reactor
,”
Chem. Eng. Prog.
0360-7275,
47
, pp.
490
498
.
4.
Segal
,
A.
, and
Epstein
,
M.
, 2003, “
Solar Ground Reformer
,”
Sol. Energy
0038-092X,
75
, pp.
479
490
.
5.
Ishida
,
M.
, and
Jin
,
H.
, 1994, “
A New Advanced Power-Generation System Using Chemical-Looping Combustion
,”
Energy
0360-5442,
19
, pp.
415
422
.
6.
Jin
,
H.
,
Okamoto
,
T.
, and
Ishida
,
M.
, 1999, “
Development of a Novel Chemical-Looping Combustion: Synthesis of a Solid Looping Material of NiO/NiAl2O4
,”
Ind. Eng. Chem. Res.
0888-5885,
38
, pp.
126
132
.
7.
Jin
,
H.
,
Okamoto
,
T.
, and
Ishida
,
M.
, 1998, “
Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material With a Double Metal Oxide of CoO–NiO
,”
Energy Fuels
0887-0624,
12
, pp.
1272
1277
.
8.
Lyngfelt
,
A.
,
Leckner
,
B.
, and
Mattisson
,
T.
, 2001, “
A Fluidized-Bed Combustion Process With Inherent CO2 Separation; Application of Chemical-Looping Combustion
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
3101
3113
.
9.
Wolf
,
J.
,
Anhedenb
,
M.
, and
Yan
,
J.
, 2005, “
Comparison of Nickel- and Iron-Based Oxygen Carriers in Chemical Looping Combustion for CO2 Capture in Power Generation
,”
Fuel
0016-2361,
84
, pp.
993
1006
.
10.
Naqvi
,
R.
,
Bolland
,
O.
,
Brandvoll
,
Ø.
, and
Helle
,
K.
, 2004, “
Chemical Looping Combustion-Analysis of Natural Gas Fired Power Cycles With Inherent CO2 Capture
,”
Proceedings of the ASME Turbo Expo, Power for Land, Sea, and Air
, Vienna, Austria.
11.
Hong
,
H.
,
Jin
,
H.
,
Ji
,
J.
,
Wang
,
Z.
, and
Cai
,
R.
, 2005, “
Solar Thermal Power Cycle With Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy
,”
Sol. Energy
0038-092X,
78
, pp.
49
58
.
12.
Jin
,
H.
,
Sui
,
J.
,
Hong
,
H.
,
Wang
,
Z.
,
Zheng
,
D.
, and
Hou
,
Z.
, 2007, “
Prototype of Middle-Temperature Solar Receiver/Reactor With Parabolic Trough Concentrator
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
378
381
.
13.
Hong
,
H.
,
Jin
,
H.
, and
Liu
,
B.
, 2006, “
A Novel Solar-Hybrid Gas Turbine Combined Cycle With Inherent CO2 Separation Using Chemical-Looping Combustion by Solar Heat Source
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
275
284
.
14.
Consonni
,
S.
,
Lozza
,
G.
,
Pelliccia
,
G.
,
Rossini
,
S.
, and
Saviano
,
F.
, 2006, “
Chemical-Looping Combustion for Combined Cycles With CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
525
534
.
15.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
, 2002, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
109
125
.
16.
Kribus
,
A.
,
Krupkin
,
V.
,
Yogev
,
A.
, and
Sprikl
,
W.
, 1998, “
Performance Limits of Heliostat Fields
,”
ASME J. Sol. Energy Eng.
0199-6231,
120
, pp.
240
246
.
17.
Buck
,
R.
,
Bräuning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
F.
, 2002, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
2
9
.
18.
Ishida
,
M.
, and
Ji
,
J.
, 1999, “
Graphical Exergy Study on Single Stage Absorption Heat Transformer
,”
Appl. Therm. Eng.
1359-4311,
19
, pp.
1191
1206
.
19.
Riemer
,
P.
, 1996, “
Greenhouse Gas Mitigation Technologies, an Overview of the CO2 Capture, Storage, and Future Activities of the IEA Greenhouse Gas R&D Program
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
665
670
.
20.
Jin
,
H.
, and
Ishida
,
M.
, 2002, “
Reactivity Study on Natural-Gas-Fueled Chemical-Looping Combustion by a Fixed Bed Reactor
,”
Ind. Eng. Chem. Res.
0888-5885,
41
, pp.
4004
4007
.
21.
Jin
,
H.
, and
Ishida
,
M.
, 2000, “
A Novel Gas Turbine Cycle With Hydrogen-Fueled Chemical-Looping Combustion
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
1209
1215
.
22.
Jin
,
H.
, and
Ishida
,
M.
, 2004, “
A New Type of Coal Gas Fueled Chemical-Looping Combustion
,”
Fuel
0016-2361,
83
, pp.
2411
2417
.
You do not currently have access to this content.