Abstract

Thermo-hydraulic performance evaluation of parabolic trough collector is important while introducing heat transfer augmentation techniques to it. In the present outdoor experimental study, the role of twisted tape is justified in laminar flow-based parabolic trough collector. For the Re range of 544–1742 and solar beam radiation of 400–750 W/m2, the use of twisted tape (twist ratios: 5.2, 4.1, and 2.7) resulted in maximum instantaneous efficiency of 22.3%, 29.5%, and 40%, respectively, against 19.1% with plain receiver. The effect of pressure drop rise on system performance due to twisted tape is found to be insignificant as effective thermo-hydraulic efficiency recorded are 21.8%, 29.3%, and 39.7%, respectively, with maximum uncertainty involved of 1.01%. In view of the importance of system performance evaluation over a wide range of operating parameters and limitation of outdoor experiments, an analytical model has been developed which followed the similar trend. The model takes into account various operating conditions, viz. laminar, twisted tape-based laminar and turbulent flow condition as well as air-in-annulus and evacuated receiver cases. Using the model (laminar region) in both plain and twisted tape cases, the maximum percentage deviation in the prediction of exit fluid temperature (in °C) and effective thermo-hydraulic efficiency are 1.6 and 13.3, respectively. Further, for a turbulent case, the maximum percentage deviation in exit temperature (in °C) noticed is 2.9. Hence, the developed analytical model is having a good agreement with the experimental outcomes.

References

1.
Reddy
,
K. S.
,
Ajay
,
C. S.
, and
Kumar
,
B. N.
,
2018
, “
Sensitivity Study of Thermal Performance Characteristics Based on Optical Parameters for Direct Steam Generation in Parabolic Trough Collectors
,”
Sol. Energy
,
169
, pp.
577
593
. 10.1016/j.solener.2018.03.088
2.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renewable Sustainable Energy Rev.
,
91
(
1
), pp.
358
375
. 10.1016/j.rser.2018.03.091
3.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
, pp.
125
141
. 10.1016/j.renene.2016.02.046
4.
Venegas-Reyes
,
E.
,
Jaramillo
,
O. A.
,
Castrejo-García
,
R.
,
Aguilar
,
J. O.
, and
Sosa-Montemayor
,
F.
,
2012
, “
Design, Construction, and Testing of a Parabolic Trough Solar Concentrator for Hot Water and Low Enthalpy Steam Generation
,”
J. Renewable Sustainable Energy. Sustain. Energy
,
4
, p.
053103
.
5.
Jaramillo
,
O. A.
,
Venegas-Reyes
,
E.
,
Aguilar
,
J. O.
,
Castrejo-García
,
R.
, and
Sosa-Montemayor
,
F.
,
2013
, “
Parabolic Trough Concentrators for Low Enthalpy Processes
,”
Renewable Energy
,
60
, pp.
529
539
. 10.1016/j.renene.2013.04.019
6.
Ghadirijafarbeigloo
,
S.
,
Zamzamian
,
A. H.
, and
Yaghoubi
,
M.
,
2014
, “
3-D Numerical Simulation of Heat Transfer and Turbulent Flow in a Receiver Tube of Solar Parabolic Trough Concentrator with Louvered Twisted-Tape Inserts
,”
Energy Procedia
,
49
, pp.
373
380
.
7.
Song
,
X.
,
Dong
,
G.
,
Gao
,
F
.
,
Diao,
X.
,
Zheng
,
L.
, and
Zhou
,
F
.
,
2014
, “
A Numerical Study of Parabolic Trough Receiver With non-Uniform Heat Flux and Helical Screw-Tape Inserts
,”
Energy
,
77
, pp.
771
782
. 10.1016/j.energy.2014.09.049
8.
Zhu
,
X.
,
Zhu
,
L.
, and
Zhao
,
J.
,
2017
, “
Wavy-tape Insert Designed for Managing Highly Concentrated Solar Energy on Absorber Tube of Parabolic Trough Receiver
,”
Energy
,
141
, pp.
1146
1155
. 10.1016/j.energy.2017.10.010
9.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
November. Heat Transfer Enhancement in a Parabolic Trough Receiver Using Wall Detached Twisted Tape Inserts
,”
ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
, pp.
V06BT07A031
V06BT07A031
.
10.
Elton
,
D. N.
, and
Arunachala
,
U. C.
,
2018
, “
Parabolic Trough Solar Collector for Medium Temperature Applications: an Experimental Analysis of the Efficiency and Length Optimization by Using Inserts
,”
ASME J. Solar Energy Eng.
,
140
(
6
), p.
061012
. 10.1115/1.4040583
11.
Chakroun
,
W. M.
, and
Al-Fahed
,
S. F.
,
1996
, “
The Effect of Twisted-Tape Width on Heat Transfer and Pressure Drop for Fully Developed Laminar Flow
,”
ASME J. Eng. Gas Turbines Power
,
118
(
3
), pp.
584
589
. 10.1115/1.2816688
12.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I-Laminar Flows
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
881
889
. 10.1115/1.2911383
13.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II-Transition and Turbulent Flows
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
890
896
. 10.1115/1.2911384
14.
Hong
,
S. W.
, and
Bergles
,
A. E.
,
1976
, “
Augmentation of Laminar Flow Heat Transfer in Tubes by Means of Twisted-Tape Inserts
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
251
256
. 10.1115/1.3450527
15.
Agarwal
,
S. K.
, and
Rao
,
M. R.
,
1996
, “
Heat Transfer Augmentation for the Flow of a Viscous Liquid in Circular Tubes Using Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3547
3557
. 10.1016/0017-9310(96)00039-7
16.
Tiwari
,
M.
, and
Saha
,
S. K.
,
2015
, “
Laminar Flow Through a Circular Tube Having Transverse Ribs and Twisted Tapes
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041009
. 10.1115/1.4030792
17.
Bharadwaj
,
P.
,
Khondge
,
A. D.
, and
Date
,
A. W.
,
2009
, “
Heat Transfer and Pressure Drop in a Spirally Grooved Tube With Twisted Tape Insert
,”
Int. J. Heat Mass Transfer
,
52
(
7
), pp.
1938
1944
. 10.1016/j.ijheatmasstransfer.2008.08.038
18.
Vashistha
,
C.
,
Patil
,
A. K.
, and
Kumar
,
M.
,
2016
, “
Experimental Investigation of Heat Transfer and Pressure Drop in a Circular Tube with Multiple Inserts
,”
Appl. Thermal Eng.
,
96
, pp.
117
129
. 10.1016/j.applthermaleng.2015.11.077
19.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1975
, “
A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convective Problems
,”
Advances Heat Transfer
,
11
, pp.
265
315
. 10.1016/S0065-2717(08)70076-5
20.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Advances Heat Transfer
,
8
, pp.
93
160
. 10.1016/S0065-2717(08)70038-8
21.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
. 10.1016/0017-9310(75)90222-7
22.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
San Diego, CA
.
23.
Elton
,
D. N.
, and
Arunachala
,
U. C.
,
2018
, “
Twisted Tape Based Heat Transfer Enhancement in Parabolic Trough Concentrator-An Experimental Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
376
, pp.
1
8
.
24.
Hausen
,
H.
,
1943
, “
Darstellung des Warmeuberganges in Rohren Durch Verallgemeinerte Potenzbeziehungen
,”
Z. VDI Beih. Verfahrenstech
,
4
, pp.
91
98
.
25.
Kothandaraman
,
C. P.
,
2004
,
Heat and Mass Transfer Data Book
,
New Age International
,
New Delhi, India
.
26.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1990
,
Fundamentals of Fluid Mechanics
,
John Wiley & Sons, Inc.
,
New York
.
27.
SYLTHERM-800 Heat Transfer Fluid
,
1997
,
Product Technical Data, Dow Chemical Company
.
28.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
A. R.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
,
Test Results: SEGS LS-2 Solar Collector (No. SAND–94-1884)
,
Sandia National Labs
,
Albuquerque, NM
.
You do not currently have access to this content.